Improving the accuracy of circuit quantization using the electromagnetic properties of superconductors
- URL: http://arxiv.org/abs/2410.24004v1
- Date: Thu, 31 Oct 2024 15:06:12 GMT
- Title: Improving the accuracy of circuit quantization using the electromagnetic properties of superconductors
- Authors: Seong Hyeon Park, Gahyun Choi, Eunjong Kim, Gwanyeol Park, Jisoo Choi, Jiman Choi, Yonuk Chong, Yong-Ho Lee, Seungyong Hahn,
- Abstract summary: We propose an improved method for quantizing superconducting circuits.
We experimentally verify our method using planar superconducting quantum devices made of 35 nm-thick disordered niobium films.
Our method enables systematic studies of superconducting devices based on disordered thin films or compact, fine-pitched elements.
- Score: 2.8635469418155406
- License:
- Abstract: Recent advances in quantum information processing with superconducting qubits have fueled a growing demand for scaling and miniaturizing circuit layouts. Despite significant progress, accurately predicting the Hamiltonian of complex circuits remains a challenging task. In this work, we propose an improved method for quantizing superconducting circuits that incorporates material- and geometry-dependent kinetic inductance. Our approach models thin superconducting films as equivalent reactive boundary elements, seamlessly integrating into the conventional circuit quantization framework without adding computational complexity. As a proof of concept, we experimentally verify our method using planar superconducting quantum devices made of 35 nm-thick disordered niobium films, known to exhibit large kinetic inductance values. We demonstrate significantly improved accuracy in predicting the Hamiltonian based solely on the chip layout and material properties of the superconducting films and Josephson junctions, with discrepancies in mode frequencies remaining below 2%. Our method enables systematic studies of superconducting devices based on disordered thin films or compact, fine-pitched elements and, more broadly, facilitates the precise engineering of superconducting quantum circuits at scale.
Related papers
- Measurement of Many-Body Quantum Correlations in Superconducting Circuits [2.209921757303168]
We propose a probe circuit capable of reading out many-body correlations in an analog quantum simulator.
We demonstrate the capabilities of this design in the context of an LC-ladder with a quantum impurity.
arXiv Detail & Related papers (2024-06-17T17:36:36Z) - Simulating the Quantum Rabi Model in Superconducting Qubits at Deep
Strong Coupling [0.8363593384698137]
We address the challenge of achieving deep strong coupling in Quantum Cavity Electrodynamics (cQED).
Our focus is on a transformative digital quantum simulation, employing Trotterization with an augmented number of steps to deconstruct a complex unitary Hamiltonian.
Our goal is to demonstrate deep strong coupling in cQED and understand the advantages of digital methods, particularly in coherent measurement during time evolution with varying photon counts in resonators.
arXiv Detail & Related papers (2024-02-10T14:09:11Z) - Functional Renormalization Group Approach to Circuit Quantum
Electrodynamics [0.0]
A nonperturbative approach is developed to analyze superconducting circuits coupled to quantized electromagnetic continuum.
Our results indicate that a nonperturbative analysis is essential for a comprehensive understanding of cQED platforms.
arXiv Detail & Related papers (2022-08-30T09:43:39Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Ultrahigh-inductance materials from spinodal decomposition [30.5681951791708]
Disordered superconducting nitrides with kinetic inductance have long been considered a leading material candidate for high-inductance quantum-circuit applications.
We propose a method to drastically increase the kinetic inductance of superconducting materials via spinodal decomposition while keeping a low microwave loss.
For the first time demonstrate the utilization of spinodal decomposition to trigger the insulator-to-superconductor transition with a drastically enhanced material disorder.
arXiv Detail & Related papers (2021-11-09T12:42:09Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Hybrid superconductor-semiconductor systems for quantum technology [0.0]
Superconducting quantum devices provide excellent connectivity and controllability.
semiconductor spin qubits stand out with their long-lasting quantum coherence, fast control, and potential for miniaturization and scaling.
Recent progress has been made in combining superconducting circuits and semiconducting devices into hybrid quantum systems.
arXiv Detail & Related papers (2020-04-30T18:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.