Parameter choices in HaarPSI for IQA with medical images
- URL: http://arxiv.org/abs/2410.24098v1
- Date: Thu, 31 Oct 2024 16:28:49 GMT
- Title: Parameter choices in HaarPSI for IQA with medical images
- Authors: Clemens Karner, Janek Gröhl, Ian Selby, Judith Babar, Jake Beckford, Thomas R Else, Timothy J Sadler, Shahab Shahipasand, Arthikkaa Thavakumar, Michael Roberts, James H. F. Rudd, Carola-Bibiane Schönlieb, Jonathan R Weir-McCall, Anna Breger,
- Abstract summary: We optimize parameters for two annotated medical data sets, a photoacoustic and a chest X-Ray data set.
We denote the optimized setting, which improves the performance for the medical images notably, by HaarPSI$_MED$.
The results suggest that adapting common IQA measures within their frameworks for medical images can provide a valuable, generalizable addition to the employment of more specific task-based measures.
- Score: 6.133660772208096
- License:
- Abstract: When developing machine learning models, image quality assessment (IQA) measures are a crucial component for evaluation. However, commonly used IQA measures have been primarily developed and optimized for natural images. In many specialized settings, such as medical images, this poses an often-overlooked problem regarding suitability. In previous studies, the IQA measure HaarPSI showed promising behavior for natural and medical images. HaarPSI is based on Haar wavelet representations and the framework allows optimization of two parameters. So far, these parameters have been aligned for natural images. Here, we optimize these parameters for two annotated medical data sets, a photoacoustic and a chest X-Ray data set. We observe that they are more sensitive to the parameter choices than the employed natural images, and on the other hand both medical data sets lead to similar parameter values when optimized. We denote the optimized setting, which improves the performance for the medical images notably, by HaarPSI$_{MED}$. The results suggest that adapting common IQA measures within their frameworks for medical images can provide a valuable, generalizable addition to the employment of more specific task-based measures.
Related papers
- Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - A study on the adequacy of common IQA measures for medical images [6.580928439802918]
The most commonly used IQA measures have been developed and tested for natural images, but not in the medical setting.
In this study, we test the applicability of common IQA measures for medical image data by comparing their assessment to manually rated chest X-ray (5 experts) and photoacoustic image data (2 experts)
arXiv Detail & Related papers (2024-05-29T16:04:03Z) - A study of why we need to reassess full reference image quality assessment with medical images [7.018256825895632]
In particular, the FR-IQA measures PSNR and SSIM are known and tested for working successfully in many natural imaging tasks.
This paper provides a structured and comprehensive collection of examples where the two most common full reference (FR) image quality measures prove to be unsuitable for the assessment of novel algorithms.
arXiv Detail & Related papers (2024-05-29T14:01:40Z) - HyperPredict: Estimating Hyperparameter Effects for Instance-Specific Regularization in Deformable Image Registration [2.2252684361733293]
Methods for medical image registration infer geometric transformations that align pairs/groups of images by maximising an image similarity metric.
Regularization terms are essential to obtain meaningful registration results.
We propose a method for evaluating the influence of hyper parameters and subsequently selecting an optimal value for given image pairs.
arXiv Detail & Related papers (2024-03-04T14:17:30Z) - Reverse Engineering Breast MRIs: Predicting Acquisition Parameters
Directly from Images [1.256413718364189]
We introduce a neural network model that can predict many complex IAPs used to generate an MR image with high accuracy solely using the image.
Even challenging parameters such as contrast agent type can be predicted with good accuracy.
arXiv Detail & Related papers (2023-03-08T22:02:15Z) - Controllable Image Enhancement [66.18525728881711]
We present a semiautomatic image enhancement algorithm that can generate high-quality images with multiple styles by controlling a few parameters.
An encoder-decoder framework encodes the retouching skills into latent codes and decodes them into the parameters of image signal processing functions.
arXiv Detail & Related papers (2022-06-16T23:54:53Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Rethinking the Hyperparameters for Fine-tuning [78.15505286781293]
Fine-tuning from pre-trained ImageNet models has become the de-facto standard for various computer vision tasks.
Current practices for fine-tuning typically involve selecting an ad-hoc choice of hyper parameters.
This paper re-examines several common practices of setting hyper parameters for fine-tuning.
arXiv Detail & Related papers (2020-02-19T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.