論文の概要: Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
- arxiv url: http://arxiv.org/abs/2410.24128v1
- Date: Thu, 31 Oct 2024 16:53:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:56.626684
- Title: Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis
- Title(参考訳): 量子MDPのためのQラーニング:分解・性能・収束解析
- Authors: Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, Marek Petrik,
- Abstract要約: マルコフ決定過程(MDPs)において、バリュー・アット・リスク(Value-at-Risk)のような量子リスク尺度は、特定の結果に対するRLエージェントの嗜好をモデル化するための標準指標である。
本稿では,強い収束と性能保証を有するMDPにおける量子化最適化のための新しいQ-ラーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 30.713243690224207
- License:
- Abstract: In Markov decision processes (MDPs), quantile risk measures such as Value-at-Risk are a standard metric for modeling RL agents' preferences for certain outcomes. This paper proposes a new Q-learning algorithm for quantile optimization in MDPs with strong convergence and performance guarantees. The algorithm leverages a new, simple dynamic program (DP) decomposition for quantile MDPs. Compared with prior work, our DP decomposition requires neither known transition probabilities nor solving complex saddle point equations and serves as a suitable foundation for other model-free RL algorithms. Our numerical results in tabular domains show that our Q-learning algorithm converges to its DP variant and outperforms earlier algorithms.
- Abstract(参考訳): マルコフ決定過程(MDPs)において、バリュー・アット・リスク(Value-at-Risk)のような量子リスク尺度は、特定の結果に対するRLエージェントの嗜好をモデル化するための標準指標である。
本稿では,強い収束と性能保証を有するMDPにおける量子化最適化のための新しいQ-ラーニングアルゴリズムを提案する。
このアルゴリズムは、量子MDPのための新しい単純動的プログラム(DP)分解を利用する。
従来の研究と比較すると、DP分解は既知の遷移確率や複雑なサドル点方程式を解く必要はなく、他のモデルなしRLアルゴリズムの適切な基礎となる。
表領域における数値的な結果から,我々のQ-ラーニングアルゴリズムはDPの変種に収束し,先行アルゴリズムよりも優れていたことが分かる。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - On Convergence of Average-Reward Q-Learning in Weakly Communicating Markov Decision Processes [11.868402302316131]
本稿では,マルコフ決定過程(MDP)の強化学習(RL)アルゴリズムを,平均回帰基準の下で解析する。
本稿では,MDPを弱通信する反復RVI法のモデル自由集合であるRVI(Rexent Value)に基づくQ-learningアルゴリズムに着目した。
論文 参考訳(メタデータ) (2024-08-29T04:57:44Z) - Solving Multi-Model MDPs by Coordinate Ascent and Dynamic Programming [8.495921422521068]
マルチモデルマルコフ決定プロセス(MMDP)は、コンピューティングポリシーのための有望なフレームワークである。
MMDP は,MDP モデルの分布よりも期待されるリターンを最大化する政策を見出すことを目的としている。
本稿では,コーディネート・アセント法と,MMDPを解く動的プログラミングアルゴリズムを組み合わせたCADPを提案する。
論文 参考訳(メタデータ) (2024-07-08T18:47:59Z) - Multi-Timescale Ensemble Q-learning for Markov Decision Process Policy
Optimization [21.30645601474163]
元々のQ-ラーニングは、非常に大きなネットワークにわたるパフォーマンスと複雑性の課題に悩まされている。
従来のQ-ラーニングに適応したモデルフリーアンサンブル強化学習アルゴリズムを提案する。
計算結果から,提案アルゴリズムは平均ポリシエラーを最大55%,実行時複雑性を最大50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-02-08T08:08:23Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Non-stationary Reinforcement Learning under General Function
Approximation [60.430936031067006]
まず,非定常MDPに対する動的ベルマンエルダー次元(DBE)と呼ばれる新しい複雑性指標を提案する。
提案する複雑性指標に基づいて,SW-OPEAと呼ばれる新しい信頼度セットに基づくモデルフリーアルゴリズムを提案する。
SW-OPEAは,変動予算がそれほど大きくない限り,有効に有効であることを示す。
論文 参考訳(メタデータ) (2023-06-01T16:19:37Z) - On Practical Robust Reinforcement Learning: Practical Uncertainty Set
and Double-Agent Algorithm [11.748284119769039]
ロバスト強化学習(RRL)は、マルコフ決定プロセス(MDP)の不確実性に対して最悪のケースパフォーマンスを最適化するための堅牢なポリシーを求めることを目的としている。
論文 参考訳(メタデータ) (2023-05-11T08:52:09Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Partial Policy Iteration for L1-Robust Markov Decision Processes [13.555107578858307]
本稿では、ロバストなMDPの共通クラスを解くための新しい効率的なアルゴリズムについて述べる。
我々は、ロバストなMDPのための部分ポリシーイテレーション、新しい、効率的で柔軟な、一般的なポリシーイテレーションスキームを提案する。
実験結果から,提案手法は最先端手法よりも桁違いに高速であることが示唆された。
論文 参考訳(メタデータ) (2020-06-16T19:50:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。