HoloChrome: Polychromatic Illumination for Speckle Reduction in Holographic Near-Eye Displays
- URL: http://arxiv.org/abs/2410.24144v1
- Date: Thu, 31 Oct 2024 17:05:44 GMT
- Title: HoloChrome: Polychromatic Illumination for Speckle Reduction in Holographic Near-Eye Displays
- Authors: Florian Schiffers, Grace Kuo, Nathan Matsuda, Douglas Lanman, Oliver Cossairt,
- Abstract summary: Holographic displays hold the promise of providing authentic depth cues, resulting in enhanced immersive visual experiences for near-eye applications.
Current holographic displays are hindered by speckle noise, which limits accurate reproduction of color and texture in displayed images.
We present HoloChrome, a polychromatic holographic display framework designed to mitigate these limitations.
- Score: 8.958725481270807
- License:
- Abstract: Holographic displays hold the promise of providing authentic depth cues, resulting in enhanced immersive visual experiences for near-eye applications. However, current holographic displays are hindered by speckle noise, which limits accurate reproduction of color and texture in displayed images. We present HoloChrome, a polychromatic holographic display framework designed to mitigate these limitations. HoloChrome utilizes an ultrafast, wavelength-adjustable laser and a dual-Spatial Light Modulator (SLM) architecture, enabling the multiplexing of a large set of discrete wavelengths across the visible spectrum. By leveraging spatial separation in our dual-SLM setup, we independently manipulate speckle patterns across multiple wavelengths. This novel approach effectively reduces speckle noise through incoherent averaging achieved by wavelength multiplexing. Our method is complementary to existing speckle reduction techniques, offering a new pathway to address this challenge. Furthermore, the use of polychromatic illumination broadens the achievable color gamut compared to traditional three-color primary holographic displays. Our simulations and tabletop experiments validate that HoloChrome significantly reduces speckle noise and expands the color gamut. These advancements enhance the performance of holographic near-eye displays, moving us closer to practical, immersive next-generation visual experiences.
Related papers
- Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
We propose a novel framework incorporating stereo depth estimation to enforce accurate geometric constraints.
To mitigate the effects of poor lighting on stereo matching, we introduce Degradation Masking.
Our method achieves state-of-the-art (SOTA) performance on the Multi-Spectral Stereo (MS2) dataset.
arXiv Detail & Related papers (2024-11-06T03:30:46Z) - Configurable Learned Holography [33.45219677645646]
We introduce a learned model that interactively computes 3D holograms from RGB-only 2D images for a variety of holographic displays.
We enable our hologram computations to rely on identifying the correlation between depth estimation and 3D hologram synthesis tasks.
arXiv Detail & Related papers (2024-03-24T13:57:30Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
This paper proposes a specialized dual-modulated learning framework that attempts to deeply dissect the nature of the low-light super-resolution task.
We develop Illuminance-Semantic Dual Modulation (ISDM) components to enhance feature-level preservation of illumination and color details.
Comprehensive experiments showcases the applicability and generalizability of our approach to diverse and challenging ultra-low-light conditions.
arXiv Detail & Related papers (2023-09-11T06:55:32Z) - AutoColor: Learned Light Power Control for Multi-Color Holograms [15.655689651318033]
Multi-color holograms rely on simultaneous illumination from multiple light sources.
We introduce AutoColor, the first learned method for estimating the optimal light source powers required for illuminating multi-color holograms.
arXiv Detail & Related papers (2023-05-02T17:14:03Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
arXiv Detail & Related papers (2023-04-20T04:05:22Z) - Time-multiplexed Neural Holography: A flexible framework for holographic
near-eye displays with fast heavily-quantized spatial light modulators [44.73608798155336]
Holographic near-eye displays offer unprecedented capabilities for virtual and augmented reality systems.
We report advances in camera-calibrated wave propagation models for these types of holographic near-eye displays.
Our framework is flexible in supporting runtime supervision with different types of content, including 2D and 2.5D RGBD images, 3D focal stacks, and 4D light fields.
arXiv Detail & Related papers (2022-05-05T00:03:50Z) - Neural Étendue Expander for Ultra-Wide-Angle High-Fidelity Holographic Display [51.399291206537384]
Modern holographic displays possess low 'etendue, which is the product of the display area and the maximum solid angle of diffracted light.
We present neural 'etendue expanders, which are learned from a natural image dataset.
With neural 'etendue expanders, we experimentally achieve 64$times$ 'etendue expansion of natural images in full color, expanding the FOV by an order of magnitude horizontally and vertically.
arXiv Detail & Related papers (2021-09-16T17:21:52Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - Towards Occlusion-Aware Multifocal Displays [33.48441420074575]
Multifocal displays place virtual content at multiple focal planes, each at a di erent depth.
A novel ConeTilt operator provides an additional degree of freedom -- tilting the light cone emitted at each pixel of the display panel.
We demonstrate that ConeTilt can be easily implemented by a phase-only spatial light modulator.
arXiv Detail & Related papers (2020-05-02T23:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.