Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators
- URL: http://arxiv.org/abs/2410.24162v1
- Date: Thu, 31 Oct 2024 17:20:13 GMT
- Title: Conformalized Prediction of Post-Fault Voltage Trajectories Using Pre-trained and Finetuned Attention-Driven Neural Operators
- Authors: Amirhossein Mollaali, Gabriel Zufferey, Gonzalo Constante-Flores, Christian Moya, Can Li, Guang Lin, Meng Yue,
- Abstract summary: We propose a new data-driven methodology for predicting intervals of post-fault voltage trajectories in power systems.
The proposed operator regression model maps the observed portion of the voltage trajectory to its unobserved post-fault trajectory.
We evaluate the performance of the proposed methodology using the New England 39-bus test system.
- Score: 9.336308366735656
- License:
- Abstract: This paper proposes a new data-driven methodology for predicting intervals of post-fault voltage trajectories in power systems. We begin by introducing the Quantile Attention-Fourier Deep Operator Network (QAF-DeepONet), designed to capture the complex dynamics of voltage trajectories and reliably estimate quantiles of the target trajectory without any distributional assumptions. The proposed operator regression model maps the observed portion of the voltage trajectory to its unobserved post-fault trajectory. Our methodology employs a pre-training and fine-tuning process to address the challenge of limited data availability. To ensure data privacy in learning the pre-trained model, we use merging via federated learning with data from neighboring buses, enabling the model to learn the underlying voltage dynamics from such buses without directly sharing their data. After pre-training, we fine-tune the model with data from the target bus, allowing it to adapt to unique dynamics and operating conditions. Finally, we integrate conformal prediction into the fine-tuned model to ensure coverage guarantees for the predicted intervals. We evaluated the performance of the proposed methodology using the New England 39-bus test system considering detailed models of voltage and frequency controllers. Two metrics, Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW), are used to numerically assess the model's performance in predicting intervals. The results show that the proposed approach offers practical and reliable uncertainty quantification in predicting the interval of post-fault voltage trajectories.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Adaptive Uncertainty Quantification for Trajectory Prediction Under Distributional Shift [6.029850098632435]
Trajectory prediction models can infer both finite future trajectories and their associated uncertainties in an online setting.
We propose the Conformal Uncertainty Quantification under Distribution Shift framework, CUQDS, to quantify the uncertainty of the predicted trajectories.
arXiv Detail & Related papers (2024-06-17T21:25:36Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
This paper conducts the first study of the online test-time adaptation techniques for spatial-temporal traffic flow forecasting problems.
We propose an Adaptive Double Correction by Series Decomposition (ADCSD) method, which first decomposes the output of the trained model into seasonal and trend-cyclical parts.
In the proposed ADCSD method, instead of fine-tuning the whole trained model during the testing phase, a lite network is attached after the trained model, and only the lite network is fine-tuned in the testing process each time a data entry is observed.
arXiv Detail & Related papers (2024-01-08T12:04:39Z) - Reliable Prediction Intervals with Regression Neural Networks [1.569545894307769]
We propose an extension to conventional regression Neural Networks (NNs) for replacing the point predictions they produce with prediction intervals that satisfy a required level of confidence.
Our approach follows a novel machine learning framework, called Conformal Prediction (CP), for assigning reliable confidence measures to predictions.
We evaluate the proposed method on four benchmark datasets and on the problem of predicting Total Electron Content (TEC), which is an important parameter in trans-ionospheric links.
arXiv Detail & Related papers (2023-12-15T08:39:02Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Debiased Fine-Tuning for Vision-language Models by Prompt Regularization [50.41984119504716]
We present a new paradigm for fine-tuning large-scale vision pre-trained models on downstream task, dubbed Prompt Regularization (ProReg)
ProReg uses the prediction by prompting the pretrained model to regularize the fine-tuning.
We show the consistently strong performance of ProReg compared with conventional fine-tuning, zero-shot prompt, prompt tuning, and other state-of-the-art methods.
arXiv Detail & Related papers (2023-01-29T11:53:55Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.