Reliable Prediction Intervals with Regression Neural Networks
- URL: http://arxiv.org/abs/2312.09606v1
- Date: Fri, 15 Dec 2023 08:39:02 GMT
- Title: Reliable Prediction Intervals with Regression Neural Networks
- Authors: Harris Papadopoulos and Haris Haralambous
- Abstract summary: We propose an extension to conventional regression Neural Networks (NNs) for replacing the point predictions they produce with prediction intervals that satisfy a required level of confidence.
Our approach follows a novel machine learning framework, called Conformal Prediction (CP), for assigning reliable confidence measures to predictions.
We evaluate the proposed method on four benchmark datasets and on the problem of predicting Total Electron Content (TEC), which is an important parameter in trans-ionospheric links.
- Score: 1.569545894307769
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes an extension to conventional regression Neural Networks
(NNs) for replacing the point predictions they produce with prediction
intervals that satisfy a required level of confidence. Our approach follows a
novel machine learning framework, called Conformal Prediction (CP), for
assigning reliable confidence measures to predictions without assuming anything
more than that the data are independent and identically distributed (i.i.d.).
We evaluate the proposed method on four benchmark datasets and on the problem
of predicting Total Electron Content (TEC), which is an important parameter in
trans-ionospheric links; for the latter we use a dataset of more than 60000 TEC
measurements collected over a period of 11 years. Our experimental results show
that the prediction intervals produced by our method are both well-calibrated
and tight enough to be useful in practice.
Related papers
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
We develop an algorithm that exploits the latent-space representation of data points fed into the network to assess the accuracy of their prediction.
We show on a synthetic dataset that commonly used methods are mostly overconfident.
In contrast, our method can detect such out-of-distribution data points as inaccurately predicted, thus aiding in the automatic detection of outliers.
arXiv Detail & Related papers (2023-05-18T09:52:06Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR)
It enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate in a distribution-free manner.
Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable.
arXiv Detail & Related papers (2022-07-28T16:40:26Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Conformal Prediction Intervals for Neural Networks Using Cross
Validation [0.0]
Neural networks are among the most powerful nonlinear models used to address supervised learning problems.
We propose the $k$-fold prediction interval method to construct prediction intervals for neural networks based on $k$-fold cross validation.
arXiv Detail & Related papers (2020-06-30T16:23:28Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.