論文の概要: Zonal RL-RRT: Integrated RL-RRT Path Planning with Collision Probability and Zone Connectivity
- arxiv url: http://arxiv.org/abs/2410.24205v1
- Date: Thu, 31 Oct 2024 17:57:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:00:48.761468
- Title: Zonal RL-RRT: Integrated RL-RRT Path Planning with Collision Probability and Zone Connectivity
- Title(参考訳): RL-RRT:衝突確率とゾーン接続性を考慮した統合RL-RRT経路計画
- Authors: AmirMohammad Tahmasbi, MohammadSaleh Faghfoorian, Saeed Khodaygan, Aniket Bera,
- Abstract要約: そこで本研究では,kd-treeパーティショニングを利用した経路計画アルゴリズムZalnal RL-RRTを導入し,ゾーン接続に対処しながらマップをゾーンに分割する。
本アルゴリズムは,森林マップにおけるRTやRT*などの基本サンプリング手法と比較して,時間効率を3倍に向上させる。
NeuralRRT*やMPNetSMPのような学習ベースの手法やRT*Jと比較して、我々のアルゴリズムは平均して、同じ環境での1.5倍の性能を示す。
- 参考スコア(独自算出の注目度): 11.134855513221359
- License:
- Abstract: Path planning in high-dimensional spaces poses significant challenges, particularly in achieving both time efficiency and a fair success rate. To address these issues, we introduce a novel path-planning algorithm, Zonal RL-RRT, that leverages kd-tree partitioning to segment the map into zones while addressing zone connectivity, ensuring seamless transitions between zones. By breaking down the complex environment into multiple zones and using Q-learning as the high-level decision-maker, our algorithm achieves a 3x improvement in time efficiency compared to basic sampling methods such as RRT and RRT* in forest-like maps. Our approach outperforms heuristic-guided methods like BIT* and Informed RRT* by 1.5x in terms of runtime while maintaining robust and reliable success rates across 2D to 6D environments. Compared to learning-based methods like NeuralRRT* and MPNetSMP, as well as the heuristic RRT*J, our algorithm demonstrates, on average, 1.5x better performance in the same environments. We also evaluate the effectiveness of our approach through simulations of the UR10e arm manipulator in the MuJoCo environment. A key observation of our approach lies in its use of zone partitioning and Reinforcement Learning (RL) for adaptive high-level planning allowing the algorithm to accommodate flexible policies across diverse environments, making it a versatile tool for advanced path planning.
- Abstract(参考訳): 高次元空間における経路計画は、特に時間効率と公正な成功率の両面で大きな課題を生んでいる。
これらの問題に対処するため, ゾーン間のシームレスな遷移を確保するため, kd-treeパーティショニングを利用した新しい経路計画アルゴリズムZalnal RL-RRTを導入する。
複雑な環境を複数のゾーンに分割し,Q-ラーニングを高レベルな意思決定者として利用することにより,森林マップにおけるRTやRT*といった基本的なサンプリング手法と比較して,時間効率を3倍に向上させる。
本稿では,BIT* や Informed RRT* などのヒューリスティック誘導方式を,2D から6D 環境における堅牢かつ信頼性の高い成功率を維持しながら,実行時の1.5倍に向上する。
NeuralRRT* や MPNetSMP のような学習ベースの手法やヒューリスティックな RRT*J と比較して,我々のアルゴリズムは,同じ環境における平均1.5倍の性能を示す。
また,MuJoCo環境下でのUR10eアームマニピュレータのシミュレーションにより,本手法の有効性を評価する。
ゾーン分割と強化学習(RL)を適応的な高レベル計画に適用することで、アルゴリズムは多様な環境にまたがる柔軟なポリシーを適応し、高度な経路計画のための汎用的なツールとなる。
関連論文リスト
- LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
経路計画はロボット工学と自律航法における基本的な科学的問題である。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
本稿では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力とを相乗的に組み合わせた LLM ベースの経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:24:30Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Vertex-based Networks to Accelerate Path Planning Algorithms [3.684936338492373]
本稿では,RT* のサンプリングプロセスを強化するため,頂点に基づくネットワークの利用を提案し,より効率的な経路計画手法を提案する。
我々は、関連するデータ不均衡問題に対処するために焦点損失を採用し、異なるマスキング構成を探索し、システム性能の実用的なトレードオフを決定する。
論文 参考訳(メタデータ) (2023-07-13T20:56:46Z) - Learning Coverage Paths in Unknown Environments with Deep Reinforcement Learning [17.69984142788365]
被覆経路計画 (CPP) は、制限された領域の自由空間全体をカバーする経路を見つける問題である。
この課題に対する強化学習の適性について検討する。
本稿では,フロンティアに基づく計算可能なエゴセントリックマップ表現と,全変動に基づく新たな報酬項を提案する。
論文 参考訳(メタデータ) (2023-06-29T14:32:06Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Generative Adversarial Network based Heuristics for Sampling-based Path
Planning [34.368519009432426]
本稿では,サンプリングに基づく経路計画の限界を克服する画像ベース経路計画アルゴリズムを提案する。
具体的には、環境マップを他の前処理作業なしに入力として扱うために、GAN(Generative Adversarial Network)を設計する。
提案手法の有効性を検証するためのシミュレーション実験を多数実施し,本手法が初期解の品質と最適解への収束速度の面ではるかに優れた性能を発揮することを実証した。
論文 参考訳(メタデータ) (2020-12-07T07:29:57Z) - Conditional Generative Adversarial Networks for Optimal Path Planning [30.892250698479064]
条件付き生成逆数ネットワーク(CGAN)と修正RT*アルゴリズム(CGANRRT*で記述)に基づく新しい学習経路計画アルゴリズムを提案する。
CGANモデルは、地上の真理マップから学習することで訓練され、それぞれがRRTアルゴリズムの実行結果を1つの生地図上で50回行った結果から生成される。
CGAN-RRT* アルゴリズムと従来の RRT* アルゴリズムを比較することで,この CGAN モデルの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-06T02:53:50Z) - AM-RRT*: Informed Sampling-based Planning with Assisting Metric [3.42658286826597]
複雑な動的環境下でのオンラインパス計画のためのRRT*とRT-RRT*を拡張する新しいアルゴリズムを提案する。
提案手法はRTRに基づくサンプリング手法を拡張して,障害物のある環境における性能向上のためのアシスト距離測定値の活用を可能にする。
論文 参考訳(メタデータ) (2020-10-28T01:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。