論文の概要: LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning
- arxiv url: http://arxiv.org/abs/2407.02511v1
- Date: Thu, 20 Jun 2024 01:24:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:14:55.097764
- Title: LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning
- Title(参考訳): LLM-A*:大規模言語モデルによる経路計画におけるインクリメンタルヒューリスティック検索
- Authors: Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, Kai-Wei Chang,
- Abstract要約: 経路計画はロボット工学と自律航法における基本的な科学的問題である。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
本稿では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力とを相乗的に組み合わせた LLM ベースの経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
- 参考スコア(独自算出の注目度): 91.95362946266577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Path planning is a fundamental scientific problem in robotics and autonomous navigation, requiring the derivation of efficient routes from starting to destination points while avoiding obstacles. Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows. Conversely, large language models (LLMs) excel in broader environmental analysis through contextual understanding, providing global insights into environments. However, they fall short in detailed spatial and temporal reasoning, often leading to invalid or inefficient routes. In this work, we propose LLM-A*, an new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs. This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios. By integrating the strengths of both methodologies, LLM-A* addresses the computational and memory limitations of conventional algorithms without compromising on the validity required for effective pathfinding.
- Abstract(参考訳): 経路計画はロボット工学と自律航法における基本的な科学的問題であり、障害物を避けながら出発点から目的地までの効率的な経路を導出する必要がある。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
逆に、大規模言語モデル(LLM)は、文脈理解を通じてより広い環境分析に優れ、環境に対するグローバルな洞察を提供する。
しかし、それらは詳細な空間的および時間的推論において不足しており、しばしば無効または非効率な経路につながる。
本研究では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力を相乗的に組み合わせた LLM-A* の経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
両方の手法の長所を統合することで、LLM-A*は、有効なパスフィニングに必要な妥当性を妥協することなく、従来のアルゴリズムの計算とメモリの制限に対処する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
複雑な無線環境における経路計画を実現するために,視覚言語モデル(VLM)を用いた新しい手法を提案する。
この目的のために、実世界の無線レイトレーシングデータを用いたデジタルツインからの洞察を探索する。
その結果, SCoTT はDP-WA* と比較して非常に近い平均経路ゲインを実現し, 同時に一貫した経路長が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - Sample and Oracle Efficient Reinforcement Learning for MDPs with Linearly-Realizable Value Functions [10.225358400539719]
本稿では,線形作用が特徴写像に一般化される決定法(MDP)の効率的な強化アルゴリズムを提案する。
具体的には、この設定において、最適に近いポリシーを効率的に見つける新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-07T14:38:05Z) - Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning [13.26886445965894]
Pluto and Charon(PAC)は、個人用LLMの微調整のための、時間とメモリ効率のよい協調エッジAIフレームワークである。
PACは、パラメータ、時間、メモリの点で効率的なパーソナルLLMの微調整技術を実装している。
プロトタイプ実装に基づく大規模な評価は、PACが最先端のアプローチを著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T11:30:12Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - LLM A*: Human in the Loop Large Language Models Enabled A* Search for Robotics [3.567107449359775]
本研究は,ロボットなどの移動体エージェントの(パス)計画において,Large Language Models(LLM)がいかに役立つかに焦点を当てる。
LLM A* という新しいフレームワークは LLM のコモンセンスを活用することを目的としており、ユーティリティ最適化 A* は少数ショットに近い経路計画を容易にするために提案されている。
このアプローチでは、人間からのフィードバックを受け取り、計画プロセス全体を(ホワイトボックスのように)人間に透明にします。
論文 参考訳(メタデータ) (2023-12-04T10:37:58Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Overcoming Exploration: Deep Reinforcement Learning in Complex
Environments from Temporal Logic Specifications [2.8904578737516764]
本稿では,大規模複雑な環境に展開する未知の連続時間ダイナミクスを有するタスク誘導型ロボットのためのDeep Reinforcement Learning (DRL)アルゴリズムを提案する。
本フレームワークは,大規模複雑な環境下での複雑なミッションをこなすロボットの性能(有効性,効率)を著しく向上させる。
論文 参考訳(メタデータ) (2022-01-28T16:39:08Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
自動走行車のための解釈可能かつ効率的な意思決定・制御フレームワークを提案する。
駆動タスクを階層的に構造化されたマルチパス計画と最適追跡に分解する。
その結果,オンライン計算の効率性や交通効率,安全性などの運転性能が向上した。
論文 参考訳(メタデータ) (2021-03-18T14:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。