論文の概要: ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
- arxiv url: http://arxiv.org/abs/2410.24214v1
- Date: Thu, 31 Oct 2024 17:59:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:25.173920
- Title: ARQ: A Mixed-Precision Quantization Framework for Accurate and Certifiably Robust DNNs
- Title(参考訳): ARQ: 正確かつ精度の高いDNNのための混合精度量子化フレームワーク
- Authors: Yuchen Yang, Shubham Ugare, Yifan Zhao, Gagandeep Singh, Sasa Misailovic,
- Abstract要約: 混合精度量子化は、限られたリソースコンピューティングプラットフォーム上でディープニューラルネットワーク(DNN)の実行を可能にする重要な技術となっている。
本稿では、スムーズな分類器のクリーンな精度を保ちつつ、その信頼性を保ちながら、新しい混合精度量子化手法であるARQを紹介する。
- 参考スコア(独自算出の注目度): 15.43153209571646
- License:
- Abstract: Mixed precision quantization has become an important technique for enabling the execution of deep neural networks (DNNs) on limited resource computing platforms. Traditional quantization methods have primarily concentrated on maintaining neural network accuracy, either ignoring the impact of quantization on the robustness of the network, or using only empirical techniques for improving robustness. In contrast, techniques for robustness certification, which can provide strong guarantees about the robustness of DNNs have not been used during quantization due to their high computation cost. This paper introduces ARQ, an innovative mixed-precision quantization method that not only preserves the clean accuracy of the smoothed classifiers but also maintains their certified robustness. ARQ uses reinforcement learning to find accurate and robust DNN quantization, while efficiently leveraging randomized smoothing, a popular class of statistical DNN verification algorithms, to guide the search process. We compare ARQ with multiple state-of-the-art quantization techniques on several DNN architectures commonly used in quantization studies: ResNet-20 on CIFAR-10, ResNet-50 on ImageNet, and MobileNetV2 on ImageNet. We demonstrate that ARQ consistently performs better than these baselines across all the benchmarks and the input perturbation levels. In many cases, the performance of ARQ quantized networks can reach that of the original DNN with floating-point weights, but with only 1.5% instructions.
- Abstract(参考訳): 混合精度量子化は、限られたリソースコンピューティングプラットフォーム上でディープニューラルネットワーク(DNN)の実行を可能にする重要な技術となっている。
従来の量子化手法は、主にニューラルネットワークの正確性を維持することに集中しており、量子化がネットワークの堅牢性に与える影響を無視している。
対照的に、DNNのロバスト性に関する強い保証を提供するロバストネス認証技術は、高い計算コストのために量子化において使われていない。
本稿では、スムーズな分類器のクリーンな精度を保ちつつ、その信頼性を保ちながら、新しい混合精度量子化手法であるARQを紹介する。
ARQは、強化学習を用いて正確で堅牢なDNN量子化を見つけ、また、統計DNN検証アルゴリズムの一般的なクラスであるランダム化スムーシングを効率的に活用して、探索プロセスのガイドを行う。
CIFAR-10ではResNet-20、ImageNetではResNet-50、ImageNetではMobileNetV2である。
我々は、すべてのベンチマークと入力摂動レベルにおいて、ARQはこれらのベースラインよりも一貫してパフォーマンスが良いことを実証した。
多くの場合、ARQ量子化されたネットワークの性能は浮動小数点重みを持つ元のDNNの性能に達するが、1.5%の命令しか持たない。
関連論文リスト
- AdaQAT: Adaptive Bit-Width Quantization-Aware Training [0.873811641236639]
大規模ディープニューラルネットワーク(DNN)は多くのアプリケーションシナリオで大きな成功を収めています。
モデル量子化は、デプロイメントの制約に対処する一般的なアプローチであるが、最適化されたビット幅の探索は困難である。
AdaQAT(Adaptive Bit-Width Quantization Aware Training)は,学習中のビット幅を自動的に最適化し,より効率的な推論を行う学習手法である。
論文 参考訳(メタデータ) (2024-04-22T09:23:56Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
スパイキングニューラルネットワーク(SNN)は効率を向上させるという目標を共有しているが、ニューラルネットワーク推論の消費電力を減らすために、"イベント駆動"アプローチを採用する。
本稿では, ステートフルニューロンに対するQAT方式として, (i) 均一量子化戦略, (ii) 重み量子化の確立された方法, (ii) しきい値中心量子化の2つを紹介する。
以上の結果から,発火閾値付近の量子化レベルの密度の増加は,複数のベンチマークデータセットの精度を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T03:07:16Z) - Quantized Approximately Orthogonal Recurrent Neural Networks [6.524758376347808]
ORNNにおける重み行列の量子化を探求し、ほぼ直交RNN(QORNN)を量子化する。
本稿では,量子化学習(QAT)と計算予測を組み合わせた2つのQORNN学習手法を提案する。
最も効率的なモデルは、4ビットの量子化であっても、様々な標準ベンチマークで最先端のフル精度ORNN、LSTM、FastRNNと同様の結果が得られる。
論文 参考訳(メタデータ) (2024-02-05T09:59:57Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
量子化は、浮動小数点数に匹敵する精度でニューラルネットワークのサイズを減らすための有望な技術として登場した。
そこで本研究では,QNNに対する新しい,効率的な形式検証手法を提案する。
特に、QNNの検証問題を整数線形制約の解法に還元する符号化を初めて提案する。
論文 参考訳(メタデータ) (2022-12-10T03:00:29Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
本稿では,ネットワークアーキテクチャ検索手法と量子化手法を組み合わせることで,両者のメリットを享受することを提案する。
まず、多数の量子化モデルを取得するために、共有ステップサイズでアーキテクチャと量子化の合同トレーニングを提案する。
次に、量子化されたモデルを低ビットに転送するためにビット継承方式を導入し、さらに時間コストを削減し、量子化精度を向上させる。
論文 参考訳(メタデータ) (2020-10-09T03:52:16Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。