Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics
- URL: http://arxiv.org/abs/2008.02184v2
- Date: Fri, 18 Dec 2020 11:11:13 GMT
- Title: Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics
- Authors: Andreu Riera-Campeny, Anna Sanpera, and Philipp Strasberg
- Abstract summary: We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Describing open quantum systems far from equilibrium is challenging, in
particular when the environment is mesoscopic, when it develops nonequilibrium
features during the evolution, or when the memory effects cannot be
disregarded. Here, we derive a master equation that explicitly accounts for
system-bath correlations and includes, at a coarse-grained level, a dynamically
evolving bath. Such a master equation applies to a wide variety of physical
systems including those described by Random Matrix Theory or the Eigenstate
Thermalization Hypothesis. We obtain a local detailed balance condition which,
interestingly, does not forbid the emergence of stable negative temperature
states in unison with the definition of temperature through the Boltzmann
entropy. We benchmark the master equation against the exact evolution and
observe a very good agreement in a situation where the conventional
Born-Markov-secular master equation breaks down. Interestingly, the present
description of the dynamics is robust and it remains accurate even if some of
the assumptions are relaxed. Even though our master equation describes a
dynamically evolving bath not described by a Gibbs state, we provide a
consistent nonequilibrium thermodynamic framework and derive the first and
second law as well as the Clausius inequality. Our work paves the way for
studying a variety of nanoscale quantum technologies including engines,
refrigerators, or heat pumps beyond the conventionally employed assumption of a
static thermal bath.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs [0.0]
We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs.
Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian.
We show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises.
arXiv Detail & Related papers (2024-04-30T21:41:34Z) - Dynamics of a small quantum system open to a bath with thermostat [0.0]
We investigate dynamics of a small quantum system open to a bath with thermostat.
We introduce another bath, called super bath, weakly coupled with the bath to provide it with thermostat.
We find steady state does not depend on thermostat, but time-dependent state does, that agrees with common expectation.
arXiv Detail & Related papers (2024-04-23T23:45:56Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Full counting statistics and coherences: fluctuation symmetry in heat
transport with the Unified quantum master equation [0.0]
We investigate statistics of energy currents through open quantum systems with nearly degenerate levels.
We find that maintaining coherences between nearly degenerate levels is essential for the properly capturing the current and its cumulants.
arXiv Detail & Related papers (2022-12-21T19:01:52Z) - Quantum Thermodynamic Uncertainty Relations, Generalized Current
Fluctuations and Nonequilibrium Fluctuation-Dissipation Inequalities [0.0]
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems.
We show how TURs are rooted in the quantum uncertainty principles and the fluctuation-dissipation inequalities (FDI) under fully nonequilibrium conditions.
arXiv Detail & Related papers (2022-06-20T15:26:53Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Nonequilibrium Quantum Free Energy and Effective Temperature, Generating
Functional and Influence Action [0.0]
A formal derivation is provided by way of the generating functional in terms of the coarse-grained effective action and the influence action.
The nonequilibrium thermodynamic functions we find here obey the familiar relation $mathcalF_textscs(t)=mathcalU_textscs(t)- T_textsceff (t),mathcalS_vN(t)$ it at any and all moments of time in the system's fully nonequilibrium evolution history.
arXiv Detail & Related papers (2020-11-20T16:01:11Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.