論文の概要: RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
- arxiv url: http://arxiv.org/abs/2411.00073v1
- Date: Thu, 31 Oct 2024 16:22:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:01.353114
- Title: RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
- Title(参考訳): RSL-SQL: テキストからSQL生成におけるロバストなスキーマリンク
- Authors: Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen,
- Abstract要約: 本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
BIRDとSpiderのベンチマーク実験により,提案手法がオープンソースソリューションの最先端実行精度を実現することを示す。
- 参考スコア(独自算出の注目度): 12.765849111313614
- License:
- Abstract: Text-to-SQL generation aims to translate natural language questions into SQL statements. In large language models (LLMs) based Text-to-SQL, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that requires caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. Our approach improves the recall of schema linking through forward and backward pruning and hedges the risk by voting between full schema and contextual information augmented simplified schema. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves state-of-the-art execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.
- Abstract(参考訳): Text-to-SQL生成は、自然言語の質問をSQLステートメントに変換することを目的としている。
大規模言語モデル(LLM)ベースのText-to-SQLでは、スキーマリンクは、関連するスキーマ要素のみを選択してLSMの入力を合理化する戦略として広く採用されている。
しかし、スキーマリンクは、必要な要素の削除やデータベースの構造的整合性の破壊など、注意を要するリスクに直面します。
これらの課題に対処するために、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSL-SQLという新しいフレームワークを提案する。
提案手法では,前向きおよび後向きのプルーニングを通じてスキーマリンクのリコールを改善し,フルスキーマとコンテキスト情報拡張型簡易スキーマの投票によりリスクをヘッジする。
GPT-4oを用いてBIRDとスパイダーのベンチマーク実験を行った結果,BIRDは67.2%,スパイダーは87.9%であった。
さらに,GPT-4ベースのText-to-SQLシステムでは,DeepSeekを同一のプロンプトで適用した場合(非常に安価)に性能が向上する。
大規模分析およびアブレーション研究により,本フレームワークにおける各コンポーネントの有効性が確認された。
コードはhttps://github.com/Laqcce-cao/RSL-SQLで公開されている。
関連論文リスト
- MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL [15.824894030016187]
近年,テキスト・トゥ・コンテクスト・タスクにおいて,インコンテキスト・ラーニングに基づく手法が顕著な成功を収めている。
これらのモデルのパフォーマンスと、複雑なデータベーススキーマを持つデータセット上でのヒューマンパフォーマンスとの間には、依然として大きなギャップがあります。
本フレームワークでは,データベース内の列の選択にテーブルの要約を含むエンティティベースの手法を用い,それらの複雑な質問を分解するために,新たな目標条件分解手法を導入する。
論文 参考訳(メタデータ) (2024-08-15T04:57:55Z) - The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models [0.9149661171430259]
次世代の大規模言語モデル(LLM)を使用する場合のスキーマリンクを再検討する。
より新しいモデルでは,無関係なモデルが多数存在する場合でも,生成時に関連するスキーマ要素を利用することが可能であることが実証的に判明した。
文脈情報をフィルタリングする代わりに、拡張、選択、修正などのテクニックを強調し、テキストからBIRDパイプラインの精度を向上させるためにそれらを採用する。
論文 参考訳(メタデータ) (2024-08-14T17:59:04Z) - SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy [24.919119901664843]
本稿では,オープンソースのLarge Language Models(LLM)を,クエリの精度とユーザビリティを高めるための一連のツールに統合する,堅牢なシステムを提案する。
Ant GroupによるSpider Leaderboardとデプロイメントのリードパフォーマンスによって実証された。
論文 参考訳(メタデータ) (2024-07-19T06:01:57Z) - Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
複雑なsqlクエリのためのスキーマ対応マルチタスク学習フレームワーク(MT)を提案する。
具体的には、有効な質問スキーマリンクを識別するために、識別器モジュールを設計する。
デコーダ側では、テーブルと列の接続を記述するために、6種類の関係を定義します。
論文 参考訳(メタデータ) (2024-03-09T01:13:37Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Towards Generalizable and Robust Text-to-SQL Parsing [77.18724939989647]
本稿では,タスク分解,知識獲得,知識構成からなる新しいTKKフレームワークを提案する。
このフレームワークは,Spider,SParC,Co.データセット上でのすべてのシナリオと最先端のパフォーマンスに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T09:21:27Z) - Semantic Enhanced Text-to-SQL Parsing via Iteratively Learning Schema
Linking Graph [6.13728903057727]
新しいデータベースへの一般化性は、人間の発話を insql 文を解析することを目的とした Text-to- システムにとって極めて重要である。
本稿では,質問トークンとデータベーススキーマ間のセマンティックなスキーマリンクグラフを反復的に構築するIS ESLというフレームワークを提案する。
3つのベンチマークでの大規模な実験により、IS ESLはベースラインを一貫して上回り、さらなる調査ではその一般化可能性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-08-08T03:59:33Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
本稿では,ポアンカー距離測定に基づく探索手法を用いて,関係構造を抽出する枠組みを提案する。
スキーマリンクの一般的なルールベース手法と比較して,探索関係は意味的対応をしっかりと捉えることができることがわかった。
我々のフレームワークは3つのベンチマークで最先端のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-06-28T14:05:25Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGEは、フィールドのサブセットが質問に言及されたセル値で拡張されるタグ付きシーケンスの質問とDBスキーマを表します。
BRIDGEは、人気のクロスDBテキスト-リレーショナルベンチマークで最先端のパフォーマンスを達成しました。
本分析は,BRIDGEが望まれる相互依存を効果的に捕捉し,さらにテキストDB関連タスクに一般化する可能性を示唆している。
論文 参考訳(メタデータ) (2020-12-23T12:33:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。