Understanding the Limits of Vision Language Models Through the Lens of the Binding Problem
- URL: http://arxiv.org/abs/2411.00238v1
- Date: Thu, 31 Oct 2024 22:24:47 GMT
- Title: Understanding the Limits of Vision Language Models Through the Lens of the Binding Problem
- Authors: Declan Campbell, Sunayana Rane, Tyler Giallanza, Nicolò De Sabbata, Kia Ghods, Amogh Joshi, Alexander Ku, Steven M. Frankland, Thomas L. Griffiths, Jonathan D. Cohen, Taylor W. Webb,
- Abstract summary: We show that state-of-the-art vision language models exhibit surprising failures on basic multi-object reasoning tasks that humans perform with near perfect accuracy.
We find that many of the puzzling failures of state-of-the-art VLMs can be explained as arising due to the binding problem, and that these failure modes are strikingly similar to the limitations exhibited by rapid, feedforward processing in the human brain.
- Score: 37.27516441519387
- License:
- Abstract: Recent work has documented striking heterogeneity in the performance of state-of-the-art vision language models (VLMs), including both multimodal language models and text-to-image models. These models are able to describe and generate a diverse array of complex, naturalistic images, yet they exhibit surprising failures on basic multi-object reasoning tasks -- such as counting, localization, and simple forms of visual analogy -- that humans perform with near perfect accuracy. To better understand this puzzling pattern of successes and failures, we turn to theoretical accounts of the binding problem in cognitive science and neuroscience, a fundamental problem that arises when a shared set of representational resources must be used to represent distinct entities (e.g., to represent multiple objects in an image), necessitating the use of serial processing to avoid interference. We find that many of the puzzling failures of state-of-the-art VLMs can be explained as arising due to the binding problem, and that these failure modes are strikingly similar to the limitations exhibited by rapid, feedforward processing in the human brain.
Related papers
- Cross-Modal Consistency in Multimodal Large Language Models [33.229271701817616]
We introduce a novel concept termed cross-modal consistency.
Our experimental findings reveal a pronounced inconsistency between the vision and language modalities within GPT-4V.
Our research yields insights into the appropriate utilization of such models and hints at potential avenues for enhancing their design.
arXiv Detail & Related papers (2024-11-14T08:22:42Z) - OCC-MLLM:Empowering Multimodal Large Language Model For the Understanding of Occluded Objects [2.850097504458451]
We introduce a novel multimodal model that applies a newly designed visual encoder to understand occluded objects in RGB images.
We also introduce a large-scale visual-language pair dataset for training large-scale visual-language multimodal models.
arXiv Detail & Related papers (2024-10-02T06:14:49Z) - OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
We propose a novel method to prompt large language models with in-context visual object vectors.
This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training.
Our experiments reveal that our method achieves competitive referring object classification and captioning performance.
arXiv Detail & Related papers (2024-06-02T21:36:31Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
Recent contrastive learning models have demonstrated the ability to learn an embedding space suitable for building strong vision classifiers.
Our work highlights a distinct advantage of this multi-modal embedding space: the ability to diagnose vision classifiers through natural language.
Our proposed method can discover high-error data slices, identify influential attributes and further rectify undesirable model behaviors.
arXiv Detail & Related papers (2023-02-08T18:59:42Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
We propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks.
We evaluate our method in the context of visual-control learning of drones over a series of complex tasks.
arXiv Detail & Related papers (2021-06-15T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.