論文の概要: GAFusion: Adaptive Fusing LiDAR and Camera with Multiple Guidance for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2411.00340v1
- Date: Fri, 01 Nov 2024 03:40:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:40:20.913590
- Title: GAFusion: Adaptive Fusing LiDAR and Camera with Multiple Guidance for 3D Object Detection
- Title(参考訳): GAFusion:3次元物体検出のための多重誘導型適応Fusing LiDARとカメラ
- Authors: Xiaotian Li, Baojie Fan, Jiandong Tian, Huijie Fan,
- Abstract要約: GAFusion と呼ばれる,LiDAR による大域的相互作用と適応融合を備えた新しい多モード3Dオブジェクト検出法を提案する。
GAFusionは73.6$%$mAPと74.9$%$NDSで最先端の3Dオブジェクト検出結果を達成する。
- 参考スコア(独自算出の注目度): 36.37236815038332
- License:
- Abstract: Recent years have witnessed the remarkable progress of 3D multi-modality object detection methods based on the Bird's-Eye-View (BEV) perspective. However, most of them overlook the complementary interaction and guidance between LiDAR and camera. In this work, we propose a novel multi-modality 3D objection detection method, named GAFusion, with LiDAR-guided global interaction and adaptive fusion. Specifically, we introduce sparse depth guidance (SDG) and LiDAR occupancy guidance (LOG) to generate 3D features with sufficient depth information. In the following, LiDAR-guided adaptive fusion transformer (LGAFT) is developed to adaptively enhance the interaction of different modal BEV features from a global perspective. Meanwhile, additional downsampling with sparse height compression and multi-scale dual-path transformer (MSDPT) are designed to enlarge the receptive fields of different modal features. Finally, a temporal fusion module is introduced to aggregate features from previous frames. GAFusion achieves state-of-the-art 3D object detection results with 73.6$\%$ mAP and 74.9$\%$ NDS on the nuScenes test set.
- Abstract(参考訳): 近年,バードアイビュー(Bird's-Eye-View, BEV)の視点に基づく3次元多モード物体検出法が注目されている。
しかし、そのほとんどはLiDARとカメラの相補的な相互作用とガイダンスを見落としている。
本研究では, GAFusion と呼ばれる, LiDAR による大域的相互作用と適応融合を備えた新しい多モード3次元オブジェクト検出手法を提案する。
具体的には,スパルス深度誘導(SDG)とLiDAR占有誘導(LOG)を導入し,十分な深度情報を持つ3次元特徴を生成する。
次に、LGAFT(LiDAR-Guided Adaptive fusion Transformer)を開発し、グローバルな視点から様々なBEV特徴の相互作用を適応的に強化する。
一方,マルチスケールデュアルパストランス (MSDPT) は,異なるモード特徴の受容場を拡大する。
最後に、前のフレームの特徴を集約するために、時間融合モジュールが導入された。
GAFusionは73.6$\%$ mAPと74.9$\%$ NDSで最先端の3Dオブジェクト検出結果を達成する。
関連論文リスト
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal
Consistent Transformer for 3D Object Detection [14.457844173630667]
本稿では,FusionFormerと呼ばれる,エンドツーエンドのマルチモーダル・フュージョン・トランスフォーマーベースのフレームワークを提案する。
均一なサンプリング戦略を開発することにより,2次元画像と3次元ボクセルの特徴を自発的に抽出することができる。
テスト時間増強を伴わない3次元物体検出タスクにおいて,72.6% mAP と 75.1% NDS の最先端シングルモデル性能を実現する。
論文 参考訳(メタデータ) (2023-09-11T06:27:25Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
現在広く使われているマルチモーダル3D検出法は、通常、密度の高いBird-Eye-View特徴マップを使用するLiDARベースの検出器上に構築されている。
完全にスパースなアーキテクチャは、長距離知覚において非常に効率的であるため、注目を集めている。
本稿では,新たに出現するフルスパースアーキテクチャにおいて,画像のモダリティを効果的に活用する方法を検討する。
論文 参考訳(メタデータ) (2023-04-24T17:57:43Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDARとカメラ融合技術は、自律運転において3次元物体検出を実現することを約束している。
多くのマルチモーダルな3Dオブジェクト検出フレームワークは、2D画像からのセマンティック知識を3D LiDARポイントクラウドに統合する。
本稿では2次元画像と3次元ポイントシーン解析結果の両方から意味情報を融合する汎用多モード融合フレームワークであるMulti-Sem Fusion(MSF)を提案する。
論文 参考訳(メタデータ) (2022-12-10T10:54:41Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
自律運転システムにおける高精度で信頼性の高い3次元物体検出を実現するためには,LiDARとカメラ情報の融合が不可欠である。
近年のアプローチでは、2次元カメラ画像の3次元空間への昇華点によるカメラ特徴のセマンティックな密度の探索が試みられている。
マルチグラニュラリティLiDARとカメラ機能とのマルチスケールなプログレッシブインタラクションに焦点を当てた,新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T12:29:29Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T13:21:37Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
ライダーとカメラは、自動運転における3D検出を補完する情報を提供する重要なセンサーである。
我々はDeepFusionという名前の汎用マルチモーダル3D検出モデル群を開発した。
論文 参考訳(メタデータ) (2022-03-15T18:46:06Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
SGM3Dと呼ばれるステレオ誘導単分子物体検出ネットワークを提案する。
ステレオ画像から抽出したロバストな3次元特徴を利用して、モノクル画像から得られた特徴を強化する。
本手法は,余分な計算コストを伴わずに性能を向上させるために,他の多くの単分子的手法に統合することができる。
論文 参考訳(メタデータ) (2021-12-03T13:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。