論文の概要: E2E-AFG: An End-to-End Model with Adaptive Filtering for Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2411.00437v1
- Date: Fri, 01 Nov 2024 08:02:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:28.657742
- Title: E2E-AFG: An End-to-End Model with Adaptive Filtering for Retrieval-Augmented Generation
- Title(参考訳): E2E-AFG:Retrieval-Augmented Generationのための適応フィルタ付きエンドツーエンドモデル
- Authors: Yun Jiang, Zilong Xie, Wei Zhang, Yun Fang, Shuai Pan,
- Abstract要約: 検索拡張生成のための適応フィルタを用いたエンドツーエンドモデル(E2E-AFG)を提案する。
E2E-AFGを6つの代表的な知識集約言語データセットで評価した。
- 参考スコア(独自算出の注目度): 3.544259721580075
- License:
- Abstract: Retrieval-augmented generation methods often neglect the quality of content retrieved from external knowledge bases, resulting in irrelevant information or potential misinformation that negatively affects the generation results of large language models. In this paper, we propose an end-to-end model with adaptive filtering for retrieval-augmented generation (E2E-AFG), which integrates answer existence judgment and text generation into a single end-to-end framework. This enables the model to focus more effectively on relevant content while reducing the influence of irrelevant information and generating accurate answers. We evaluate E2E-AFG on six representative knowledge-intensive language datasets, and the results show that it consistently outperforms baseline models across all tasks, demonstrating the effectiveness and robustness of the proposed approach.
- Abstract(参考訳): 検索強化された生成方法は、しばしば外部知識ベースから取得したコンテンツの品質を無視し、大きな言語モデルの生成結果に悪影響を及ぼす無関係な情報や潜在的な誤報をもたらす。
本稿では,検索強化生成(E2E-AFG)のための適応フィルタリングを用いたエンドツーエンドモデルを提案する。
これにより、無関係な情報の影響を低減し、正確な回答を生成するとともに、関連するコンテンツにより効果的にフォーカスすることができる。
本研究では,6つの代表的な知識集約型言語データセットを用いてE2E-AFGを評価し,提案手法の有効性とロバスト性を示した。
関連論文リスト
- Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval Augmented Generation [13.120801609024147]
検索拡張生成(RAG)は,大規模言語モデル(LLM)出力の現実性を高めることが示されている。
RAG入力は、NLIモデルのトレーニングに使用されるほとんどのデータセットよりも複雑である。
教師なしドメイン適応を実現するために自動生成ドメイン適応(Auto-GDA)を導入する。
論文 参考訳(メタデータ) (2024-10-04T14:21:27Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
大型言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
二重角評価による検索拡張生成フレームワーク textitThink-then-Act を提案する。
論文 参考訳(メタデータ) (2024-06-18T20:51:34Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Improving Attributed Text Generation of Large Language Models via Preference Learning [28.09715554543885]
属性タスクを選好学習としてモデル化し,自動選好最適化フレームワークを導入する。
APOは、回答品質の高い最先端の引用F1を達成する。
論文 参考訳(メタデータ) (2024-03-27T09:19:13Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Adversarial Fine-Tuning of Language Models: An Iterative Optimisation
Approach for the Generation and Detection of Problematic Content [0.0]
大規模言語モデル(LLM)における意図しない有害コンテンツ生成の課題に挑戦する。
私たちの2つのアプローチでは、潜在的に有害なプロンプトを生成するために微調整された敵モデルと、これらのプロンプトを反復的に識別するように最適化された判断モデルを採用しています。
本研究は, 初歩的なモデルテキストタダを用いて, わずか数ラウンドでGPT-4よりも13%高い精度を達成できることを示す。
論文 参考訳(メタデータ) (2023-08-26T05:20:58Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Adversarial Filters of Dataset Biases [96.090959788952]
大規模なニューラルモデルでは、言語とビジョンベンチマークで人間レベルのパフォーマンスが実証されている。
それらの性能は、敵対的またはアウト・オブ・ディストリビューションのサンプルで著しく低下する。
このようなデータセットバイアスを逆フィルタするAFLiteを提案する。
論文 参考訳(メタデータ) (2020-02-10T21:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。