論文の概要: Wasserstein Flow Matching: Generative modeling over families of distributions
- arxiv url: http://arxiv.org/abs/2411.00698v1
- Date: Fri, 01 Nov 2024 15:55:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:20.101738
- Title: Wasserstein Flow Matching: Generative modeling over families of distributions
- Title(参考訳): Wasserstein Flow Matching: 分布の族に対する生成的モデリング
- Authors: Doron Haviv, Aram-Alexandre Pooladian, Dana Pe'er, Brandon Amos,
- Abstract要約: ガウス分布を用いて生成モデリングを行い、単一セルゲノムデータから粒状細胞状態の表現を生成する方法を示す。
また、WFMは、高次元と可変サイズの点雲間の流れを学習し、空間転写学データセットから細胞マイクロ環境を合成できることを示す。
- 参考スコア(独自算出の注目度): 13.620905707751747
- License:
- Abstract: Generative modeling typically concerns the transport of a single source distribution to a single target distribution by learning (i.e., regressing onto) simple probability flows. However, in modern data-driven fields such as computer graphics and single-cell genomics, samples (say, point-clouds) from datasets can themselves be viewed as distributions (as, say, discrete measures). In these settings, the standard generative modeling paradigm of flow matching would ignore the relevant geometry of the samples. To remedy this, we propose \emph{Wasserstein flow matching} (WFM), which appropriately lifts flow matching onto families of distributions by appealing to the Riemannian nature of the Wasserstein geometry. Our algorithm leverages theoretical and computational advances in (entropic) optimal transport, as well as the attention mechanism in our neural network architecture. We present two novel algorithmic contributions. First, we demonstrate how to perform generative modeling over Gaussian distributions, where we generate representations of granular cell states from single-cell genomics data. Secondly, we show that WFM can learn flows between high-dimensional and variable sized point-clouds and synthesize cellular microenvironments from spatial transcriptomics datasets. Code is available at [WassersteinFlowMatching](https://github.com/DoronHav/WassersteinFlowMatching).
- Abstract(参考訳): 生成的モデリングは通常、単純な確率フローを学習することで単一のソース分布を単一のターゲット分布に転送する。
しかし、コンピュータグラフィックスやシングルセルゲノミクスのような現代のデータ駆動の分野では、データセットからのサンプル(例えば点雲)自体を分散(例えば離散測度)と見なすことができる。
これらの設定では、フローマッチングの標準的な生成モデリングパラダイムは、サンプルの関連する幾何学を無視する。
これを解決するために、ワッサーシュタイン幾何学のリーマン的性質に訴えることにより、分布の族へのフローマッチングを適切に昇華する 'emph{Wasserstein flow matching} (WFM) を提案する。
我々のアルゴリズムは、(エントロピー的な)最適輸送における理論と計算の進歩と、ニューラルネットワークアーキテクチャにおける注意機構を活用する。
我々は2つの新しいアルゴリズムの貢献を提示する。
まず、ガウス分布上で生成モデリングを行い、単一セルゲノムデータから粒状細胞状態の表現を生成する方法を示す。
次に、WFMは、高次元と可変サイズの点雲間の流れを学習し、空間転写学データセットから細胞マイクロ環境を合成できることを示す。
コードは[WassersteinFlowMatching](https://github.com/DoronHav/WassersteinFlowMatching]で入手できる。
関連論文リスト
- Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
本稿では,多数の離散確率変数の結合確率分布を表現するための新しい生成モデルを提案する。
全ての離散な関節分布のメタ・プレプレックスにおけるセグレ写像による流れの埋め込みは、任意の対象分布を原理的に表すことができることを保証している。
我々のアプローチは、結合された離散変数のモデリングの第一原理から強い動機を持っている。
論文 参考訳(メタデータ) (2024-06-06T21:58:33Z) - Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
離散データのための新しいフローマッチングモデルであるFisher-Flowを紹介する。
Fisher-Flowは、離散データ上のカテゴリー分布を考慮し、明らかに幾何学的な視点を採っている。
Fisher-Flowにより誘導される勾配流は, 前方KLの発散を低減するのに最適であることを示す。
論文 参考訳(メタデータ) (2024-05-23T15:02:11Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Adversarial Likelihood Estimation With One-Way Flows [44.684952377918904]
GAN(Generative Adversarial Networks)は、高品質なサンプルを生成することができるが、サンプル周辺の確率密度を見積もることはできない。
提案手法は, より高速に収束し, 類似したアーキテクチャでGANに匹敵するサンプル品質を生成し, 一般的に使用されるデータセットの過度な適合を回避し, トレーニングデータのスムーズな低次元潜在表現を生成する。
論文 参考訳(メタデータ) (2023-07-19T10:26:29Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
本稿では,アクションのシーケンスからオブジェクトを生成するためのポリシーを学習する問題について述べる。
本稿では,生成過程をフローネットワークとして見たGFlowNetを提案する。
提案した目的の任意のグローバルな最小限が、所望の分布から標本化する方針を導出することを証明する。
論文 参考訳(メタデータ) (2021-06-08T14:21:10Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMMは、フローの正規化を伴う生成半教師付き学習におけるエンドツーエンドのアプローチである。
我々は AG-News や Yahoo Answers のテキストデータなど,幅広いアプリケーションに対して有望な結果を示す。
論文 参考訳(メタデータ) (2019-12-30T17:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。