DEM-NeRF: A Neuro-Symbolic Method for Scientific Discovery through Physics-Informed Simulation
- URL: http://arxiv.org/abs/2507.21350v1
- Date: Mon, 28 Jul 2025 21:40:17 GMT
- Title: DEM-NeRF: A Neuro-Symbolic Method for Scientific Discovery through Physics-Informed Simulation
- Authors: Wenkai Tan, Alvaro Velasquez, Houbing Song,
- Abstract summary: We present a novel neuro-symbolic framework for reconstructing and simulating elastic objects directly from sparse multi-view image sequences.<n>Specifically, we integrate a neural radiance field (NeRF) for object reconstruction with physics-informed neural networks (PIN) that incorporate the governing partial differential equations of elasticity.
- Score: 25.52715002934968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have emerged as a powerful tool for modeling physical systems, offering the ability to learn complex representations from limited data while integrating foundational scientific knowledge. In particular, neuro-symbolic approaches that combine data-driven learning, the neuro, with symbolic equations and rules, the symbolic, address the tension between methods that are purely empirical, which risk straying from established physical principles, and traditional numerical solvers that demand complete geometric knowledge and can be prohibitively expensive for high-fidelity simulations. In this work, we present a novel neuro-symbolic framework for reconstructing and simulating elastic objects directly from sparse multi-view image sequences, without requiring explicit geometric information. Specifically, we integrate a neural radiance field (NeRF) for object reconstruction with physics-informed neural networks (PINN) that incorporate the governing partial differential equations of elasticity. In doing so, our method learns a spatiotemporal representation of deforming objects that leverages both image supervision and symbolic physical constraints. To handle complex boundary and initial conditions, which are traditionally confronted using finite element methods, boundary element methods, or sensor-based measurements, we employ an energy-constrained Physics-Informed Neural Network architecture. This design enhances both simulation accuracy and the explainability of results.
Related papers
- Symbolic Neural Ordinary Differential Equations [11.69943926220929]
We propose a novel learning framework of symbolic continuous-depth neural networks, termed Symbolic Neural Ordinary Differential Equations (SNODEs)<n>Our framework can be further applied to a wide range of scientific problems, such as system bifurcation and control, reconstruction and forecasting, as well as the discovery of new equations.
arXiv Detail & Related papers (2025-03-11T05:38:22Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Symmetry-enforcing neural networks with applications to constitutive modeling [0.0]
We show how to combine state-of-the-art micromechanical modeling and advanced machine learning techniques to homogenize complex microstructures exhibiting non-linear and history dependent behaviors.
The resulting homogenized model, termed smart law (SCL), enables the adoption of microly informed laws into finite element solvers at a fraction of the computational cost required by traditional concurrent multiscale approaches.
In this work, the capabilities of SCLs are expanded via the introduction of a novel methodology that enforces material symmetries at the neuron level.
arXiv Detail & Related papers (2023-12-21T01:12:44Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity.
We identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules.
arXiv Detail & Related papers (2022-09-30T15:35:04Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
Modelling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise.
New framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective.
PICN may become an alternative neural network solver in physics-informed machine learning.
arXiv Detail & Related papers (2022-01-26T14:35:58Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physical Constraint Embedded Neural Networks for inference and noise
regulation [0.0]
We present methods for embedding even--odd symmetries and conservation laws in neural networks.
We demonstrate that it can accurately infer symmetries without prior knowledge.
We highlight the noise resilient properties of physical constraint embedded neural networks.
arXiv Detail & Related papers (2021-05-19T14:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.