A Heterogeneous Network-based Contrastive Learning Approach for Predicting Drug-Target Interaction
- URL: http://arxiv.org/abs/2411.00801v1
- Date: Sun, 20 Oct 2024 14:57:24 GMT
- Title: A Heterogeneous Network-based Contrastive Learning Approach for Predicting Drug-Target Interaction
- Authors: Junwei Hu, Michael Bewong, Selasi Kwashie, Wen Zhang, Vincent M. Nofong, Guangsheng Wu, Zaiwen Feng,
- Abstract summary: Drug-target interaction (DTI) prediction is crucial for drug development and repositioning.
We propose a heterogeneous network-based contrastive learning method called HNCL-DTI.
Experimental results show that HNCL-DTI outperforms existing advanced baseline methods on benchmark datasets.
- Score: 3.1923357295923225
- License:
- Abstract: Drug-target interaction (DTI) prediction is crucial for drug development and repositioning. Methods using heterogeneous graph neural networks (HGNNs) for DTI prediction have become a promising approach, with attention-based models often achieving excellent performance. However, these methods typically overlook edge features when dealing with heterogeneous biomedical networks. We propose a heterogeneous network-based contrastive learning method called HNCL-DTI, which designs a heterogeneous graph attention network to predict potential/novel DTIs. Specifically, our HNCL-DTI utilizes contrastive learning to collaboratively learn node representations from the perspective of both node-based and edge-based attention within the heterogeneous structure of biomedical networks. Experimental results show that HNCL-DTI outperforms existing advanced baseline methods on benchmark datasets, demonstrating strong predictive ability and practical effectiveness. The data and source code are available at https://github.com/Zaiwen/HNCL-DTI.
Related papers
- Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - ResDTA: Predicting Drug-Target Binding Affinity Using Residual Skip
Connections [0.0]
We present a deep learning-based methodology for predicting DT binding affinities using just sequencing information from both targets and drugs.
The proposed model achieves the best Concordance Index (CI) performance in one of the largest benchmark datasets.
arXiv Detail & Related papers (2023-03-20T20:27:11Z) - HampDTI: a heterogeneous graph automatic meta-path learning method for
drug-target interaction prediction [4.499861098235355]
We propose a heterogeneous graph automatic meta-path learning based DTI prediction method (HampDTI)
HampDTI automatically learns the important meta-paths between drugs and targets from the HN, and generates meta-path graphs.
Experiments on benchmark datasets show that our proposed HampDTI achieves superior performance compared with state-of-the-art DTI prediction methods.
arXiv Detail & Related papers (2021-12-16T02:12:03Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions.
DTI-GAT incorporates a deep network neural architecture that operates on graph-structured data with the attention mechanism.
Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem.
arXiv Detail & Related papers (2021-07-10T07:06:36Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
We introduce an ensemble of deep learning models (EnsembleDLM) for robust DTI prediction.
EnsembleDLM only uses the sequence information of chemical compounds and proteins, and it aggregates the predictions from multiple deep neural networks.
It achieves state-of-the-art performance in Davis and KIBA datasets.
arXiv Detail & Related papers (2021-07-02T04:00:03Z) - Heterogeneous Graph based Deep Learning for Biomedical Network Link
Prediction [7.628651624423363]
We propose a Graph Pair based Link Prediction model (GPLP) for predicting biomedical network links.
InP, 1-hop subgraphs extracted from known network interaction matrix is learnt to predict missing links.
Our method demonstrates the potential applications in other biomedical networks.
arXiv Detail & Related papers (2021-01-28T07:35:29Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
We propose SumGNN: knowledge summarization graph neural network, which is enabled by a subgraph extraction module.
SumGNN outperforms the best baseline by up to 5.54%, and the performance gain is particularly significant in low data relation types.
arXiv Detail & Related papers (2020-10-04T00:14:57Z) - DeepPurpose: a Deep Learning Library for Drug-Target Interaction
Prediction [69.7424023336611]
DeepPurpose is a comprehensive and easy-to-use deep learning library for DTI prediction.
It supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures.
We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.
arXiv Detail & Related papers (2020-04-19T17:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.