SCOPE-DTI: Semi-Inductive Dataset Construction and Framework Optimization for Practical Usability Enhancement in Deep Learning-Based Drug Target Interaction Prediction
- URL: http://arxiv.org/abs/2503.09251v1
- Date: Wed, 12 Mar 2025 10:46:25 GMT
- Title: SCOPE-DTI: Semi-Inductive Dataset Construction and Framework Optimization for Practical Usability Enhancement in Deep Learning-Based Drug Target Interaction Prediction
- Authors: Yigang Chen, Xiang Ji, Ziyue Zhang, Yuming Zhou, Yang-Chi-Dung Lin, Hsi-Yuan Huang, Tao Zhang, Yi Lai, Ke Chen, Chang Su, Xingqiao Lin, Zihao Zhu, Yanggyi Zhang, Kangping Wei, Jiehui Fu, Yixian Huang, Shidong Cui, Shih-Chung Yen, Ariel Warshel, Hsien-Da Huang,
- Abstract summary: SCOPE-DTI is a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling.<n>The SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset.<n>By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.
- Score: 15.996998422919111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.
Related papers
- MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
Multi-channel Interaction Network (MIN) is a novel framework designed to predict drug-target interaction (DTI)<n>MIN incorporates a representation learning module and a multi-channel interaction module.<n>MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
arXiv Detail & Related papers (2024-11-23T05:38:36Z) - A Heterogeneous Network-based Contrastive Learning Approach for Predicting Drug-Target Interaction [3.1923357295923225]
Drug-target interaction (DTI) prediction is crucial for drug development and repositioning.
We propose a heterogeneous network-based contrastive learning method called HNCL-DTI.
Experimental results show that HNCL-DTI outperforms existing advanced baseline methods on benchmark datasets.
arXiv Detail & Related papers (2024-10-20T14:57:24Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction [23.521628951362647]
This paper introduces a novel model, called FusionDTI, which uses a token-level Fusion module to learn fine-grained information for Drug-Target Interaction.
In particular, our FusionDTI model uses the SELFIES representation of drugs to mitigate sequence fragment invalidation.
Our experiments show that our proposed FusionDTI model achieves the best performance in DTI prediction compared with seven existing state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-03T14:48:54Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Drug-Target Interaction Prediction with Graph Attention networks [26.40249934284416]
We present an end-to-end framework, DTI-GAT (Drug-Target Interaction prediction with Graph Attention networks) for DTI predictions.
DTI-GAT incorporates a deep network neural architecture that operates on graph-structured data with the attention mechanism.
Experimental evaluations show that DTI-GAT outperforms various state-of-the-art systems on the binary DTI prediction problem.
arXiv Detail & Related papers (2021-07-10T07:06:36Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
We introduce an ensemble of deep learning models (EnsembleDLM) for robust DTI prediction.
EnsembleDLM only uses the sequence information of chemical compounds and proteins, and it aggregates the predictions from multiple deep neural networks.
It achieves state-of-the-art performance in Davis and KIBA datasets.
arXiv Detail & Related papers (2021-07-02T04:00:03Z) - DeepPurpose: a Deep Learning Library for Drug-Target Interaction
Prediction [69.7424023336611]
DeepPurpose is a comprehensive and easy-to-use deep learning library for DTI prediction.
It supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures.
We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.
arXiv Detail & Related papers (2020-04-19T17:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.