Accelerated AI Inference via Dynamic Execution Methods
- URL: http://arxiv.org/abs/2411.00853v1
- Date: Wed, 30 Oct 2024 12:49:23 GMT
- Title: Accelerated AI Inference via Dynamic Execution Methods
- Authors: Haim Barad, Jascha Achterberg, Tien Pei Chou, Jean Yu,
- Abstract summary: We focus on Dynamic Execution techniques that optimize the computation flow based on input.
The techniques discussed include early exit from deep networks, speculative sampling for language models, and adaptive steps for diffusion models.
Experimental results demonstrate that these dynamic approaches can significantly improve latency and throughput without compromising quality.
- Score: 0.562479170374811
- License:
- Abstract: In this paper, we focus on Dynamic Execution techniques that optimize the computation flow based on input. This aims to identify simpler problems that can be solved using fewer resources, similar to human cognition. The techniques discussed include early exit from deep networks, speculative sampling for language models, and adaptive steps for diffusion models. Experimental results demonstrate that these dynamic approaches can significantly improve latency and throughput without compromising quality. When combined with model-based optimizations, such as quantization, dynamic execution provides a powerful multi-pronged strategy to optimize AI inference. Generative AI requires a large amount of compute resources. This is expected to grow, and demand for resources in data centers through to the edge is expected to continue to increase at high rates. We take advantage of existing research and provide additional innovations for some generative optimizations. In the case of LLMs, we provide more efficient sampling methods that depend on the complexity of the data. In the case of diffusion model generation, we provide a new method that also leverages the difficulty of the input prompt to predict an optimal early stopping point. Therefore, dynamic execution methods are relevant because they add another dimension of performance optimizations. Performance is critical from a competitive point of view, but increasing capacity can result in significant power savings and cost savings. We have provided several integrations of these techniques into several Intel performance libraries and Huggingface Optimum. These integrations will make them easier to use and increase the adoption of these techniques.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks [16.314030132923026]
We study the impact of hyperparameter optimization (HPO) to maximize DSNN performance while minimizing resource consumption.
Experimental results demonstrate the effectiveness of our approach, resulting in models with over 80% in accuracy and low computational cost.
arXiv Detail & Related papers (2024-04-02T14:03:37Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Hyperparameter optimization of data-driven AI models on HPC systems [0.0]
This work is part of RAISE's work on data-driven use cases which leverages AI- and HPC cross-methods.
It is shown that in the case of Machine-Learned Particle reconstruction in High Energy Physics, the ASHA algorithm in combination with Bayesian optimization gives the largest performance increase per compute resources spent out of the investigated algorithms.
arXiv Detail & Related papers (2022-03-02T14:02:59Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
We propose a novel prediction algorithm based on incremental support vector machine (ISVM)
We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process.
The proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
arXiv Detail & Related papers (2021-02-24T08:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.