DiabML: AI-assisted diabetes diagnosis method with meta-heuristic-based feature selection
- URL: http://arxiv.org/abs/2411.00858v1
- Date: Wed, 30 Oct 2024 16:06:58 GMT
- Title: DiabML: AI-assisted diabetes diagnosis method with meta-heuristic-based feature selection
- Authors: Vahideh Hayyolalam, Öznur Özkasap,
- Abstract summary: We propose a hybrid diabetes risk detection method, DiabML, using the BWO algorithm and ML methods.
DiabML achieves 86.1% classification accuracy by AdaBoost.
- Score: 4.788163807490197
- License:
- Abstract: Diabetes is a chronic disorder identified by the high sugar level in the blood that can cause various different disorders such as kidney failure, heart attack, sightlessness, and stroke. Developments in the healthcare domain by facilitating the early detection of diabetes risk can help not only caregivers but also patients. AIoMT is a recent technology that integrates IoT and machine learning methods to give services for medical purposes, which is a powerful technology for the early detection of diabetes. In this paper, we take advantage of AIoMT and propose a hybrid diabetes risk detection method, DiabML, which uses the BWO algorithm and ML methods. BWO is utilized for feature selection and SMOTE for imbalance handling in the pre-processing procedure. The simulation results prove the superiority of the proposed DiabML method compared to the existing works. DiabML achieves 86.1\% classification accuracy by AdaBoost classifier outperforms the relevant existing methods.
Related papers
- CDRH Seeks Public Comment: Digital Health Technologies for Detecting
Prediabetes and Undiagnosed Type 2 Diabetes [0.0]
FDA asked for public comments on role of digital health technologies (DHTs) in detecting prediabetes and undiagnosed type 2 diabetes.
DHTs capture health signals like glucose, diet, symptoms and community insights.
Subpopulations that could benefit most from remote screening tools include rural residents, minority groups, high-risk individuals and those with limited healthcare access.
arXiv Detail & Related papers (2023-12-18T14:20:53Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes.
This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system.
arXiv Detail & Related papers (2023-01-25T07:57:18Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors.
The proposed system is underpinned by the blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals.
Numerical experiments and comparative analysis were carried out between our proposed system, using the most accurate random forest (RF) model.
arXiv Detail & Related papers (2022-11-13T13:57:14Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - A novel solution of deep learning for enhanced support vector machine
for predicting the onset of type 2 diabetes [32.25039205521283]
This research aims to increase the accuracy and Area Under the Curve (AUC) metric while improving the processing time for predicting the onset of Type 2 Diabetes.
The proposed solution provides an average accuracy of 86.31 % and an average AUC value of 0.8270 or 82.70 %, with an improvement of 3.8 milliseconds in the processing.
arXiv Detail & Related papers (2022-08-05T18:15:40Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.