Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research
- URL: http://arxiv.org/abs/2411.00890v1
- Date: Thu, 31 Oct 2024 20:26:30 GMT
- Title: Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research
- Authors: Marcello Carammia, Stefano Maria Iacus, Giuseppe Porro,
- Abstract summary: Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities.
Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders.
This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4.
- Score: 0.0
- License:
- Abstract: Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities. Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders. While very large, closed-source models often deliver superior performance, their use presents significant risks. These include lack of transparency, potential exposure of sensitive data, challenges to replicability, and dependence on proprietary systems. Additionally, their high costs make them impractical for large-scale research projects. In contrast, open-source models, although available in various sizes, may underperform compared to commercial alternatives if used without further fine-tuning. However, open-source models offer distinct advantages: they can be run locally (ensuring data privacy), fine-tuned for specific tasks, shared within the research community, and integrated into reproducible workflows. This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4. We further explore the relationship between training set size and fine-tuning efficacy in open-source models. Finally, we propose a hybrid workflow that leverages the strengths of both open and closed models, offering a balanced approach to performance, transparency, and reproducibility.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs [6.179084469089114]
This paper presents EasyJudge, a model developed to evaluate significant language model responses.
It is lightweight, precise, efficient, and user-friendly, featuring an intuitive visualization interface for ease of deployment and use.
arXiv Detail & Related papers (2024-10-13T08:24:12Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTL is a novel post-processing framework that operates agnostically across tasks and models.
It identifies biases, proposes resolutions, and guides the model to self-debias its outputs.
This approach minimizes computational costs and preserves model performance.
arXiv Detail & Related papers (2024-03-01T00:02:37Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development.
This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices.
arXiv Detail & Related papers (2024-02-26T18:59:03Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
We introduce DataDreamer, an open source Python library that allows researchers to implement powerful large language models.
DataDreamer also helps researchers adhere to best practices that we propose to encourage open science.
arXiv Detail & Related papers (2024-02-16T00:10:26Z) - Building Real-World Meeting Summarization Systems using Large Language
Models: A Practical Perspective [8.526956860672698]
This paper studies how to effectively build meeting summarization systems for real-world usage using large language models (LLMs)
Our findings reveal that most closed-source LLMs are generally better in terms of performance.
Much smaller open-source models like LLaMA- 2 (7B and 13B) could still achieve performance comparable to the large closed-source models even in zero-shot scenarios.
arXiv Detail & Related papers (2023-10-30T02:25:21Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Open, Closed, or Small Language Models for Text Classification? [10.186568241388331]
We evaluate three classes of models using eight datasets across three distinct NLP tasks.
Open-source models can rival their closed-source counterparts by fine-tuning.
This study underscores the importance of model selection based on task requirements.
arXiv Detail & Related papers (2023-08-19T18:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.