A Large Language Model for Feasible and Diverse Population Synthesis
- URL: http://arxiv.org/abs/2505.04196v1
- Date: Wed, 07 May 2025 07:50:12 GMT
- Title: A Large Language Model for Feasible and Diverse Population Synthesis
- Authors: Sung Yoo Lim, Hyunsoo Yun, Prateek Bansal, Dong-Kyu Kim, Eui-Jin Kim,
- Abstract summary: We propose a fine-tuning method for large language models (LLMs) that explicitly controls the autoregressive generation process through topological orderings derived from a Bayesian Network (BN)<n>Our approach achieves approximately 95% feasibility, significantly higher than the 80% observed in deep generative models (DGMs)<n>This makes the approach cost-effective and scalable for large-scale applications, such as synthesizing populations in megacities.
- Score: 0.6581049960856515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating a synthetic population that is both feasible and diverse is crucial for ensuring the validity of downstream activity schedule simulation in activity-based models (ABMs). While deep generative models (DGMs), such as variational autoencoders and generative adversarial networks, have been applied to this task, they often struggle to balance the inclusion of rare but plausible combinations (i.e., sampling zeros) with the exclusion of implausible ones (i.e., structural zeros). To improve feasibility while maintaining diversity, we propose a fine-tuning method for large language models (LLMs) that explicitly controls the autoregressive generation process through topological orderings derived from a Bayesian Network (BN). Experimental results show that our hybrid LLM-BN approach outperforms both traditional DGMs and proprietary LLMs (e.g., ChatGPT-4o) with few-shot learning. Specifically, our approach achieves approximately 95% feasibility, significantly higher than the ~80% observed in DGMs, while maintaining comparable diversity, making it well-suited for practical applications. Importantly, the method is based on a lightweight open-source LLM, enabling fine-tuning and inference on standard personal computing environments. This makes the approach cost-effective and scalable for large-scale applications, such as synthesizing populations in megacities, without relying on expensive infrastructure. By initiating the ABM pipeline with high-quality synthetic populations, our method improves overall simulation reliability and reduces downstream error propagation. The source code for these methods is available for research and practical application.
Related papers
- Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning [77.120955854093]
We show that data diversity can be a strong predictor of generalization in language models.<n>We introduce G-Vendi, a metric that quantifies diversity via the entropy of model-induced gradients.<n>We present Prismatic Synthesis, a framework for generating diverse synthetic data.
arXiv Detail & Related papers (2025-05-26T16:05:10Z) - Latent Preference Coding: Aligning Large Language Models via Discrete Latent Codes [54.93980123979578]
We introduce Latent Preference Coding (LPC), a novel framework that models the implicit factors as well as their combinations behind holistic preferences.<n>LPC seamlessly integrates with various offline alignment algorithms, automatically inferring the underlying factors and their importance from data.
arXiv Detail & Related papers (2025-05-08T06:59:06Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research [0.0]
Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities.
Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders.
This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4.
arXiv Detail & Related papers (2024-10-31T20:26:30Z) - Amortized Bayesian Multilevel Models [9.831471158899644]
Multilevel models (MLMs) are a central building block of the Bayesian workflow.<n>MLMs pose significant computational challenges, often rendering their estimation and evaluation intractable within reasonable time constraints.<n>Recent advances in simulation-based inference offer promising solutions for addressing complex probabilistic models using deep generative networks.<n>We explore a family of neural network architectures that leverage the probabilistic factorization of multilevel models to facilitate efficient neural network training and subsequent near-instant posterior inference on unseen datasets.
arXiv Detail & Related papers (2024-08-23T17:11:04Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
We introduce a novel model that can generate diverse grasps for a multi-fingered hand.<n>The proposed idea gains superior performance and higher run-time efficiency against strong baselines.<n>We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
arXiv Detail & Related papers (2024-07-21T13:33:08Z) - P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models [15.969452637480167]
We propose using proximal policy optimization (PPO) to apply Generative Adversarial Networks (GANs)<n>PPO leads to an approximately 4% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art datasets.
arXiv Detail & Related papers (2024-06-17T10:22:00Z) - One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models [42.95555008229016]
We propose a method based on Hessian sensitivity-aware mixed sparsity pruning to prune LLMs to at least 50% sparsity without the need of any retraining.
The advantages of the proposed method exhibit even more when the sparsity is extremely high.
arXiv Detail & Related papers (2023-10-14T05:43:09Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities.
LVLMs are often problematic due to their massive computational/energy costs and carbon consumption.
We propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs.
arXiv Detail & Related papers (2023-10-04T17:34:00Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.