論文の概要: Zero-Shot Self-Consistency Learning for Seismic Irregular Spatial Sampling Reconstruction
- arxiv url: http://arxiv.org/abs/2411.00911v1
- Date: Fri, 01 Nov 2024 11:59:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:44.616327
- Title: Zero-Shot Self-Consistency Learning for Seismic Irregular Spatial Sampling Reconstruction
- Title(参考訳): 地震時不規則な空間サンプリング再構成のためのゼロショット自己整合学習
- Authors: Junheng Peng, Yingtian Liu, Mingwei Wang, Yong Li, Huating Li,
- Abstract要約: 本稿では,ゼロショットの自己整合性学習戦略を提案し,地震データ再構成に極めて軽量なネットワークを用いる。
提案手法は追加のデータセットを必要とせず,データの各部分間の相関を利用して自己整合学習損失関数を設計する。
- 参考スコア(独自算出の注目度): 6.313946204460284
- License:
- Abstract: Seismic exploration is currently the most important method for understanding subsurface structures. However, due to surface conditions, seismic receivers may not be uniformly distributed along the measurement line, making the entire exploration work difficult to carry out. Previous deep learning methods for reconstructing seismic data often relied on additional datasets for training. While some existing methods do not require extra data, they lack constraints on the reconstruction data, leading to unstable reconstruction performance. In this paper, we proposed a zero-shot self-consistency learning strategy and employed an extremely lightweight network for seismic data reconstruction. Our method does not require additional datasets and utilizes the correlations among different parts of the data to design a self-consistency learning loss function, driving a network with only 90,609 learnable parameters. We applied this method to experiments on the USGS National Petroleum Reserve-Alaska public dataset and the results indicate that our proposed approach achieved good reconstruction results. Additionally, our method also demonstrates a certain degree of noise suppression, which is highly beneficial for large and complex seismic exploration tasks.
- Abstract(参考訳): 地震探査は、現在、地下構造を理解する上で最も重要な方法である。
しかし, 表面条件のため, 地震波受信機は測定線に沿って均一に分散することができないため, 調査全体の実施は困難である。
過去の地震データを再構築するための深層学習手法は、しばしば訓練のための追加データセットに依存していた。
一部の既存手法では余分なデータを必要としないが、復元データには制約がなく、不安定な復元性能をもたらす。
本稿では,ゼロショットの自己整合性学習戦略を提案し,地震データ再構成に極めて軽量なネットワークを用いた。
本手法では,学習可能なパラメータが90,609個しかないネットワークを駆動する自己整合学習損失関数を設計するために,追加のデータセットを必要とせず,データの異なる部分間の相関を利用する。
本手法を米国地質調査所 (USGS) の国立石油準備・アラスカ公共データセットに応用し, 提案手法が良好な復元結果を得たことを示す。
さらに,本手法は,大規模かつ複雑な地震探査作業において,ある程度の騒音抑制効果を示す。
関連論文リスト
- RECOVAR: Representation Covariances on Deep Latent Spaces for Seismic Event Detection [0.0]
生波形から地震を検出することを学習する地震検出の教師なし手法を開発した。
パフォーマンスは、いくつかの最先端の教師付きメソッドと同等であり、場合によっては同等である。
このアプローチは、他のドメインからの時系列データセットに有用である可能性がある。
論文 参考訳(メタデータ) (2024-07-25T21:33:54Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model
for Fault Recognition [13.339333273943842]
本稿では,自己教師付き事前学習による地震断層認識の高度化手法を提案する。
我々は,Swin Transformerモデルをコアネットワークとして採用し,SimMIMプレトレーニングタスクを用いて,地震データにおける不連続性に関連する特徴を抽出した。
実験の結果,提案手法は,OISおよびODS測定値から,Thebeデータセット上での最先端性能を実現することができた。
論文 参考訳(メタデータ) (2023-10-27T08:38:59Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - Understanding Reconstruction Attacks with the Neural Tangent Kernel and
Dataset Distillation [110.61853418925219]
我々は、データセット再構築攻撃のより強力なバージョンを構築し、無限の幅で設定されたエンペントリアルトレーニングを確実に回復する方法を示す。
理論的にも経験的にも再構成された画像は、データセットの「外部」に傾向を示す。
これらのリコンストラクション攻撃は, テクストデータセット蒸留において, 再構成画像上で再トレーニングを行い, 高い予測精度を得ることができる。
論文 参考訳(メタデータ) (2023-02-02T21:41:59Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - MDA GAN: Adversarial-Learning-based 3-D Seismic Data Interpolation and
Reconstruction for Complex Missing [6.345037597566314]
MDA GAN(Multi-dimensional Adrial GAN)は、新しい3D GANフレームワークである。
MDA GANは、再構成されたデータの各次元における元のデータ分布との整合性を確保するために、3つの識別器を使用する。
この手法は、最大95%のランダムな離散欠失、100の連続欠失、さらに複雑なハイブリッド欠失に対する合理的な再構成を実現する。
論文 参考訳(メタデータ) (2022-04-07T04:01:53Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
提案手法は柔軟であり,既存のディープラーニング手法にも適用可能である。
本手法の有効性を、オープン脳MRIデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-26T06:09:56Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Spatiotemporal Modeling of Seismic Images for Acoustic Impedance
Estimation [12.653673008542155]
機械学習に基づくインバージョンは通常、地震データに対してトレース・バイ・トレース方式で動作する。
本研究では,各地震跡を時間的だけでなく空間的にモデル化する深層学習型地震インバージョンワークフローを提案する。
論文 参考訳(メタデータ) (2020-06-28T00:19:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。