論文の概要: Automated Assessment of Residual Plots with Computer Vision Models
- arxiv url: http://arxiv.org/abs/2411.01001v1
- Date: Fri, 01 Nov 2024 19:51:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:16.909262
- Title: Automated Assessment of Residual Plots with Computer Vision Models
- Title(参考訳): コンピュータビジョンモデルによる残差の自動評価
- Authors: Weihao Li, Dianne Cook, Emi Tanaka, Susan VanderPlas, Klaus Ackermann,
- Abstract要約: 浮動小数点残差は線形モデルの仮定から逸脱を診断するための推奨手順である。
残余プロットにおける構造の存在は、ビジュアル推論を行うためにラインアッププロトコルを用いて検証することができる。
本研究は,残余プロットの評価を自動化するコンピュータビジョンモデルを提供することで,その解を提示する。
- 参考スコア(独自算出の注目度): 5.835976576278297
- License:
- Abstract: Plotting the residuals is a recommended procedure to diagnose deviations from linear model assumptions, such as non-linearity, heteroscedasticity, and non-normality. The presence of structure in residual plots can be tested using the lineup protocol to do visual inference. There are a variety of conventional residual tests, but the lineup protocol, used as a statistical test, performs better for diagnostic purposes because it is less sensitive and applies more broadly to different types of departures. However, the lineup protocol relies on human judgment which limits its scalability. This work presents a solution by providing a computer vision model to automate the assessment of residual plots. It is trained to predict a distance measure that quantifies the disparity between the residual distribution of a fitted classical normal linear regression model and the reference distribution, based on Kullback-Leibler divergence. From extensive simulation studies, the computer vision model exhibits lower sensitivity than conventional tests but higher sensitivity than human visual tests. It is slightly less effective on non-linearity patterns. Several examples from classical papers and contemporary data illustrate the new procedures, highlighting its usefulness in automating the diagnostic process and supplementing existing methods.
- Abstract(参考訳): 非線型性、不均一性、非正規性などの線形モデル仮定から逸脱を診断するための推奨手順である。
残余プロットにおける構造の存在は、ビジュアル推論を行うためにラインアッププロトコルを用いて検証することができる。
従来の残効試験には様々な種類があるが、統計検査として使用されるラインアッププロトコルは、感度が低く、様々な種類の出発に対してより広範囲に適用されるため、診断目的のためにより良い性能を発揮する。
しかし、ラインアッププロトコルはスケーラビリティを制限する人間の判断に依存している。
本研究は,残余プロットの評価を自動化するコンピュータビジョンモデルを提供することで,その解を提示する。
Kullback-Leibler の発散に基づく古典的線形回帰モデルの残差分布と基準分布との差を定量化する距離測度を予測するために訓練された。
広範囲にわたるシミュレーション研究から、コンピュータビジョンモデルは従来の検査よりも感度が低いが、人間の視覚検査よりも感度が高い。
非直線パターンでは、わずかに効果が低い。
古典的な論文や現代のデータからのいくつかの例は、診断プロセスの自動化と既存の方法の補完に有用であることを示す新しい手順を描いている。
関連論文リスト
- Online-Adaptive Anomaly Detection for Defect Identification in Aircraft Assembly [4.387337528923525]
異常検出は、データ内の確立されたパターンから逸脱を検出する。
本稿では,移動学習を用いたオンライン適応型異常検出のための新しいフレームワークを提案する。
実験結果は0.975を超える検出精度を示し、最先端のET-NETアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-06-18T15:11:44Z) - Predictive change point detection for heterogeneous data [1.1720726814454114]
予測と比較」は、予測機械学習モデルによって支援される変化点検出フレームワークである。
オンラインCDDルーチンでは、偽陽性率と制御不能な平均ランの長さでパフォーマンスが向上する。
この手法のパワーはトライボロジーのケーススタディで実証されている。
論文 参考訳(メタデータ) (2023-05-11T07:59:18Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANは、実際のトレーニング分布を特定するために、これらのモデルのリッチなコンテキスト情報に依存している。
本稿では,自動エンコーダとGANを組み合わせた新しい教師なしモデルを提案する。
識別器の内部表現と生成器の視覚表現の線形結合と、オートエンコーダの符号化表現とを組み合わせて、提案した異常スコアを定義する。
論文 参考訳(メタデータ) (2021-12-31T16:35:47Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
可変変分オートエンコーダ (VAE) は, 医用画像の病変検出などの応用において, 異常検出の一般的なモデルとなっている。
本稿では,分散の縮小や過小評価といったよく知られた問題を避けるための代替手法について述べる。
ガウスの仮定の下で推定された定量値を用いて平均値と分散値を計算し、再構成確率を外乱検出や異常検出の原理的アプローチとして計算する。
論文 参考訳(メタデータ) (2020-10-18T17:37:39Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。