FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection
- URL: http://arxiv.org/abs/2411.01025v1
- Date: Fri, 01 Nov 2024 20:50:48 GMT
- Title: FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection
- Authors: Simon Gutwein, Martin Kampel, Sabine Taschner-Mandl, Roxane Licandro,
- Abstract summary: Existing FISH image classification methods face challenges due to signal variability and intrinsic uncertainty.
We introduce a novel approach that leverages synthetic images to eliminate the requirement for manual annotations.
We demonstrate the superior generalization capabilities and uncertainty calibration of our method, which is trained on synthetic data.
- Score: 1.3373458503586262
- License:
- Abstract: Detecting genetic aberrations is crucial in cancer diagnosis, typically through fluorescence in situ hybridization (FISH). However, existing FISH image classification methods face challenges due to signal variability, the need for costly manual annotations and fail to adequately address the intrinsic uncertainty. We introduce a novel approach that leverages synthetic images to eliminate the requirement for manual annotations and utilizes a joint contrastive and classification objective for training to account for inter-class variation effectively. We demonstrate the superior generalization capabilities and uncertainty calibration of our method, which is trained on synthetic data, by testing it on a manually annotated dataset of real-world FISH images. Our model offers superior calibration in terms of classification accuracy and uncertainty quantification with a classification accuracy of 96.7% among the 50% most certain cases. The presented end-to-end method reduces the demands on personnel and time and improves the diagnostic workflow due to its accuracy and adaptability. All code and data is publicly accessible at: https://github.com/SimonBon/FISHing
Related papers
- Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging [5.1358645354733765]
This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images.
We developed a robust library model for real-time anomaly detection, allowing for efficient comparison of incoming images.
We fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images.
arXiv Detail & Related papers (2024-08-15T23:46:37Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Predictive Accuracy-Based Active Learning for Medical Image Segmentation [5.25147264940975]
We propose an efficient Predictive Accuracy-based Active Learning (PAAL) method for medical image segmentation.
PAAL consists of an Accuracy Predictor (AP) and a Weighted Polling Strategy (WPS)
Experiment results on multiple datasets demonstrate the superiority of PAAL.
arXiv Detail & Related papers (2024-05-01T11:12:08Z) - Iterative Online Image Synthesis via Diffusion Model for Imbalanced
Classification [29.730360798234294]
We introduce an Iterative Online Image Synthesis framework to address the class imbalance problem in medical image classification.
Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS)
To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets.
arXiv Detail & Related papers (2024-03-13T10:51:18Z) - Model Calibration in Dense Classification with Adaptive Label
Perturbation [44.62722402349157]
Existing dense binary classification models are prone to being over-confident.
We propose Adaptive Label Perturbation (ASLP) which learns a unique label perturbation level for each training image.
ASLP can significantly improve calibration degrees of dense binary classification models on both in-distribution and out-of-distribution data.
arXiv Detail & Related papers (2023-07-25T14:40:11Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Improved Trainable Calibration Method for Neural Networks on Medical
Imaging Classification [17.941506832422192]
Empirically, neural networks are often miscalibrated and overconfident in their predictions.
We propose a novel calibration approach that maintains the overall classification accuracy while significantly improving model calibration.
arXiv Detail & Related papers (2020-09-09T01:25:53Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.