論文の概要: Federated Learning with Relative Fairness
- arxiv url: http://arxiv.org/abs/2411.01161v1
- Date: Sat, 02 Nov 2024 07:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:46.590231
- Title: Federated Learning with Relative Fairness
- Title(参考訳): 相対的公正性によるフェデレートラーニング
- Authors: Shogo Nakakita, Tatsuya Kaneko, Shinya Takamaeda-Yamazaki, Masaaki Imaizumi,
- Abstract要約: 本稿では,クライアントのテキストの公平性を実現するための,連合学習フレームワークを提案する。
提案フレームワークは,分散ロバスト最適化(DRO)における従来の手法を拡張し,相対不公平性を最小化するミニマックス問題手法を用いる。
クライアント間の大きな損失と小さな損失の比率に基づいて、新しい公正度指数を導入し、トレーニングされたモデルの相対的公正性を評価し改善する。
- 参考スコア(独自算出の注目度): 6.460475042590685
- License:
- Abstract: This paper proposes a federated learning framework designed to achieve \textit{relative fairness} for clients. Traditional federated learning frameworks typically ensure absolute fairness by guaranteeing minimum performance across all client subgroups. However, this approach overlooks disparities in model performance between subgroups. The proposed framework uses a minimax problem approach to minimize relative unfairness, extending previous methods in distributionally robust optimization (DRO). A novel fairness index, based on the ratio between large and small losses among clients, is introduced, allowing the framework to assess and improve the relative fairness of trained models. Theoretical guarantees demonstrate that the framework consistently reduces unfairness. We also develop an algorithm, named \textsc{Scaff-PD-IA}, which balances communication and computational efficiency while maintaining minimax-optimal convergence rates. Empirical evaluations on real-world datasets confirm its effectiveness in maintaining model performance while reducing disparity.
- Abstract(参考訳): 本稿では,クライアントに対して「textit{relative fairness}」を実現するための連合学習フレームワークを提案する。
従来のフェデレートされた学習フレームワークは、すべてのクライアントサブグループで最小パフォーマンスを保証することによって、絶対的公正性を保証する。
しかし、このアプローチはサブグループ間のモデル性能の相違を見落としている。
提案手法は, 分散ロバスト最適化(DRO)において, 従来の手法を拡張し, 相対不公平性を最小化するためにミニマックス法を用いる。
クライアント間の大きな損失と小さな損失の比率に基づいて、新しい公正度指数を導入し、トレーニングされたモデルの相対的公正性を評価し改善する。
理論的保証は、このフレームワークが一貫して不公平さを減少させることを示している。
また,最小最大収束率を維持しつつ,通信効率と計算効率のバランスをとるアルゴリズム「textsc{Scaff-PD-IA}」を開発した。
実世界のデータセットに対する実証的な評価は、相違を低減しつつ、モデル性能を維持する上での有効性を確認している。
関連論文リスト
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - Towards Fairness-Aware Adversarial Learning [13.932705960012846]
フェアネス・アウェア・アドバーサリアル・ラーニング(FAAL)という新しい学習パラダイムを提案する。
提案手法は,異なるカテゴリ間で最悪の分布を求めることを目的としており,高い確率で上界性能が得られることを保証している。
特にFAALは、不公平なロバストモデルを2つのエポックで公平に調整できるが、全体的なクリーンで堅牢なアキュラシーを損なうことはない。
論文 参考訳(メタデータ) (2024-02-27T18:01:59Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
本稿では、f-divergence measures(f-FERM)に基づく公正な経験的リスクに対する統一的な最適化フレームワークを提案する。
さらに,f-FERMによるほぼ全てのバッチサイズに対するフェアネス・精度トレードオフの優位性を実証した。
我々の拡張は、不確実集合として$L_p$ノルムの下で f-FERM の目的を分布的に頑健に最適化する手法に基づいている。
論文 参考訳(メタデータ) (2023-12-06T03:14:16Z) - Fairness-aware Federated Minimax Optimization with Convergence Guarantee [10.727328530242461]
フェデレートラーニング(FL)はそのプライバシー保護機能のためにかなりの注目を集めている。
ユーザデータ管理の自由の欠如は、モデルが人種や性別などのセンシティブな要因に偏っている、グループフェアネスの問題につながる可能性がある。
本稿では,FLにおけるグループフェアネス問題に明示的に対処するために,拡張ラグランジアン法(FFALM)を用いたフェアフェデレーション平均化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-10T08:45:58Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
フェデレートラーニング(FL)では、グローバルサーバの協調の下で、ローカルクライアントのクラスタがチェアリングされる。
クライアントは自身のオプティマに過度に適合する傾向にあり、グローバルな目標から非常に逸脱する。
tt Family FedSMOOは、グローバルな目的に対する局所的な最適性を保証するために動的正規化器を採用する。
理論解析により, tt Family FedSMOO は, 低境界一般化による高速$mathcalO (1/T)$収束率を達成することが示された。
論文 参考訳(メタデータ) (2023-05-19T10:47:44Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Fair and Consistent Federated Learning [48.19977689926562]
フェデレートラーニング(FL)は、分散データソースから学習する能力に対する関心が高まっている。
本稿では,異なるローカルクライアント間で性能整合性とアルゴリズムフェアネスを協調的に検討するFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T01:56:08Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。