Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks
- URL: http://arxiv.org/abs/2411.01192v3
- Date: Tue, 11 Feb 2025 15:36:41 GMT
- Title: Swan and ArabicMTEB: Dialect-Aware, Arabic-Centric, Cross-Lingual, and Cross-Cultural Embedding Models and Benchmarks
- Authors: Gagan Bhatia, El Moatez Billah Nagoudi, Abdellah El Mekki, Fakhraddin Alwajih, Muhammad Abdul-Mageed,
- Abstract summary: Swan is a family of embedding models centred around the Arabic language.
Two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model.
- Score: 17.5987429821102
- License:
- Abstract: We introduce {\bf Swan}, a family of embedding models centred around the Arabic language, addressing both small-scale and large-scale use cases. Swan includes two variants: Swan-Small, based on ARBERTv2, and Swan-Large, built on ArMistral, a pretrained Arabic large language model. To evaluate these models, we propose ArabicMTEB, a comprehensive benchmark suite that assesses cross-lingual, multi-dialectal, multi-domain, and multi-cultural Arabic text embedding performance, covering eight diverse tasks and spanning 94 datasets. Swan-Large achieves state-of-the-art results, outperforming Multilingual-E5-large in most Arabic tasks, while the Swan-Small consistently surpasses Multilingual-E5-base. Our extensive evaluations demonstrate that Swan models are both dialectally and culturally aware, excelling across various Arabic domains while offering significant monetary efficiency. This work significantly advances the field of Arabic language modelling and provides valuable resources for future research and applications in Arabic natural language processing. Our models and benchmark are available at our GitHub page: \href{https://github.com/UBC-NLP/swan}{https://github.com/UBC-NLP/swan}
Related papers
- AIN: The Arabic INclusive Large Multimodal Model [71.29419186696138]
AIN is an English-Arabic bilingual LMM designed to excel in English and Arabic.
AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
AIN's superior capabilities position it as a significant step toward empowering Arabic speakers with advanced multimodal generative AI tools.
arXiv Detail & Related papers (2025-01-31T18:58:20Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.
One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.
Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - ALLaM: Large Language Models for Arabic and English [9.881560166505452]
We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT)
Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English)
We show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment.
arXiv Detail & Related papers (2024-07-22T05:35:17Z) - AlcLaM: Arabic Dialectal Language Model [2.8477895544986955]
We construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms.
We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch.
Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models.
arXiv Detail & Related papers (2024-07-18T02:13:50Z) - Bilingual Adaptation of Monolingual Foundation Models [48.859227944759986]
We present an efficient method for adapting a monolingual Large Language Model (LLM) to another language.
Our two-stage approach begins with expanding the vocabulary and training only the embeddings matrix.
By continually pre-training on a mix of Arabic and English corpora, the model retains its proficiency in English while acquiring capabilities in Arabic.
arXiv Detail & Related papers (2024-07-13T21:09:38Z) - GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning [0.0]
We introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content.
We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality.
Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks.
arXiv Detail & Related papers (2024-07-02T10:43:49Z) - Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks [29.819766942335416]
Multimodal large language models (MLLMs) have proven effective in a wide range of tasks requiring complex reasoning and linguistic comprehension.
We introduce a comprehensive family of Arabic MLLMs, dubbed textitPeacock, with strong vision and language capabilities.
arXiv Detail & Related papers (2024-03-01T23:38:02Z) - Training a Bilingual Language Model by Mapping Tokens onto a Shared
Character Space [2.9914612342004503]
We train a bilingual Arabic-Hebrew language model using a transliterated version of Arabic texts in Hebrew.
We assess the performance of a language model that employs a unified script for both languages, on machine translation.
arXiv Detail & Related papers (2024-02-25T11:26:39Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open
Generative Large Language Models [57.76998376458017]
We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs)
The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts.
We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models.
arXiv Detail & Related papers (2023-08-30T17:07:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.