論文の概要: One Arrow, Many Targets: Probing LLMs for Multi-Attribute Controllable Text Summarization
- arxiv url: http://arxiv.org/abs/2411.01213v1
- Date: Sat, 02 Nov 2024 11:07:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:05.765714
- Title: One Arrow, Many Targets: Probing LLMs for Multi-Attribute Controllable Text Summarization
- Title(参考訳): 多属性制御可能なテキスト要約のためのLLMの提案
- Authors: Tathagato Roy, Rahul Mishra,
- Abstract要約: Multi-Attribute Controllable Summarization (MACS)は、自然言語処理(NLP)コミュニティの中で確立されたタスクである。
本研究は,大規模言語モデルのレンズを通してMACSタスクを調べることで,そのギャップに対処する。
2つの異なる制御可能な属性からの学習を統合するために,新しい階層型アダプタ融合手法を提案し,評価する。
- 参考スコア(独自算出の注目度): 7.734726150561089
- License:
- Abstract: Text summarization is a well-established task within the natural language processing (NLP) community. However, the focus on controllable summarization tailored to user requirements is gaining traction only recently. While several efforts explore controllability in text summarization, the investigation of Multi-Attribute Controllable Summarization (MACS) remains limited. This work addresses this gap by examining the MACS task through the lens of large language models (LLMs), using various learning paradigms, particularly low-rank adapters. We experiment with different popular adapter fine-tuning strategies to assess the effectiveness of the resulting models in retaining cues and patterns associated with multiple controllable attributes. Additionally, we propose and evaluate a novel hierarchical adapter fusion technique to integrate learnings from two distinct controllable attributes. Subsquently, we present our findings, discuss the challenges encountered, and suggest potential avenues for advancing the MACS task.
- Abstract(参考訳): テキスト要約は自然言語処理(NLP)コミュニティの中で確立された課題である。
しかし、ユーザ要求に合わせたコントロール可能な要約に焦点が当てられているのは、ごく最近になってのことである。
テキスト要約における制御可能性を探る試みはいくつかあるが、多属性制御可能要約(MACS)の研究は依然として限られている。
本研究は、大規模言語モデル(LLM)のレンズを通してMACSタスクを調べ、様々な学習パラダイム、特に低ランクアダプターを用いて、このギャップに対処する。
我々は、複数の制御可能な属性に関連付けられたキューやパターンを保持する際のモデルの有効性を評価するために、様々な人気アダプタの微調整手法を実験した。
さらに,2つの異なる制御可能な属性からの学習を統合するために,新しい階層型アダプタ融合手法を提案し,評価する。
続いて,本研究の成果を報告し,課題を議論し,MACS課題を進めるための潜在的方法を提案する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Variational Offline Multi-agent Skill Discovery [43.869625428099425]
本稿では,サブグループレベルの抽象化と時間レベルの抽象化を同時に取得し,マルチエージェントスキルを形成するための2つの新しい自動エンコーダ方式を提案する。
提案手法はオフラインのマルチタスクデータに適用可能であり,検出したサブグループスキルは再トレーニングすることなく,関連するタスク間で伝達可能である。
論文 参考訳(メタデータ) (2024-05-26T00:24:46Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - How You Prompt Matters! Even Task-Oriented Constraints in Instructions Affect LLM-Generated Text Detection [39.254432080406346]
タスク指向の制約 -- 命令に自然に含まれ、検出回避とは無関係な制約 -- でさえ、既存の強力な検出器は検出性能に大きなばらつきを持つ。
実験の結果,命令を複数回生成したり,命令を言い換えたりすることで,命令によって生成されたテキストの標準偏差(SD)が有意に大きい(SDは14.4F1スコアまで)ことがわかった。
論文 参考訳(メタデータ) (2023-11-14T18:32:52Z) - SEMQA: Semi-Extractive Multi-Source Question Answering [94.04430035121136]
本稿では,複数ソースを半抽出的に要約することで,複数の質問に答える新しいQAタスクを提案する。
この種の最初のデータセットであるQuoteSumを作成し、自然および生成された質問に対する人間による半抽出的な回答を提示する。
論文 参考訳(メタデータ) (2023-11-08T18:46:32Z) - Controllable Multi-document Summarization: Coverage & Coherence
Intuitive Policy with Large Language Model Based Rewards [42.171703872560286]
可制御性(英: controllability)とは、複数文書の要約などの長い入力を持つテキスト生成タスクにおいて問題となる問題である。
LLMによって洗練されるテキストを抽出するために、制御可能なコンテンツ抽出スキームを訓練する。
提案手法は,ROUGE測定値を用いた評価において競争結果が得られ,コヒーレンスにおける潜在的なベースラインよりも優れる。
論文 参考訳(メタデータ) (2023-10-05T11:29:09Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - MacLaSa: Multi-Aspect Controllable Text Generation via Efficient
Sampling from Compact Latent Space [110.85888003111653]
マルチアスペクト制御可能なテキスト生成は、複数の望ましい属性を同時に持つ流動文を生成することを目的としている。
マルチアスペクト制御のための新しいアプローチ、すなわちMacLaSaを導入し、複数の側面に対してコンパクトな潜在空間を推定する。
また,MacLaSaは,高い推論速度を維持しつつ,属性関連性やテキスト品質を高いベースラインで向上させることを示す。
論文 参考訳(メタデータ) (2023-05-22T07:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。