論文の概要: PMoL: Parameter Efficient MoE for Preference Mixing of LLM Alignment
- arxiv url: http://arxiv.org/abs/2411.01245v1
- Date: Sat, 02 Nov 2024 13:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:04.665253
- Title: PMoL: Parameter Efficient MoE for Preference Mixing of LLM Alignment
- Title(参考訳): PMoL: LLMアライメントの選好混合のためのパラメータ効率の良いMoE
- Authors: Dongxu Liu, Bing Xu, Yinzhuo Chen, Bufan Xu, Wenpeng Lu, Muyun Yang, Tiejun Zhao,
- Abstract要約: RLHF(Reinforcement Learning from Human Feedback)は,大規模言語モデル(LLM)の嗜好調整に有効な手法であることが証明されている。
そこで本研究では,モデルアーキテクチャの観点からPMoL(Mixture Preference of LoRA)を提案する。
PMoLは、トレーニングコストの低減とともに、より良い嗜好アライメントを実現する。
- 参考スコア(独自算出の注目度): 24.305947230704675
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has been proven to be an effective method for preference alignment of large language models (LLMs) and is widely used in the post-training process of LLMs. However, RLHF struggles with handling multiple competing preferences. This leads to a decrease in the alignment of LLMs with human preferences. To address this issue, we propose Preference Mixture of LoRAs (PMoL) from the perspective of model architecture, which can adapt to any number of preferences to mix. PMoL combines Mixture of Experts (MoE) and Low Rank Adaptor (LoRA). This architecture is innovatively applied to the research of preference alignment and has achieved significant performance improvement. The expert group soft loss is used to enable MoE with the ability to mix preferences. Through comprehensive evaluation by the reward model and GPT-4o, the experiment results show that PMoL has superior preference mixing capabilities compared to baseline methods. PMoL achieves better preference alignment with lower training costs.
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF) は大規模言語モデル(LLM)の嗜好調整に有効な手法であることが証明されており、LLMのポストトレーニングプロセスで広く利用されている。
しかし、RLHFは競合する複数の好みを扱うのに苦労している。
これにより、LLMと人間の嗜好との整合性が低下する。
この問題に対処するために、モデルアーキテクチャの観点からLoRA(Preference Mixture of LoRAs)を提案する。
PMoLはMixture of Experts (MoE)とLow Rank Adaptor (LoRA)を組み合わせている。
このアーキテクチャは、好みのアライメントの研究に革新的に適用され、大幅な性能向上を実現している。
専門家グループソフトロスは、好みを混ぜる機能を備えたMoEを可能にするために使用される。
報奨モデルと GPT-4o による総合評価により,PMoL はベースライン法に比べて良好な選好混合能力を有することが示された。
PMoLは、トレーニングコストの低減とともに、より良い嗜好アライメントを実現する。
関連論文リスト
- LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
提案手法は,大規模言語モデル(LLM)を人為的プロキシとして活用し,課題における選好選択(PE)を簡素化するものである。
本稿では,SOTA ML を用いた嗜好推論方式と併用して動作する LLM プロキシのフレームワークを提案する。
コース割当て領域における人間の問合せに対するLLMプロキシの有効性を実験的に評価した。
論文 参考訳(メタデータ) (2025-02-14T17:12:20Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Reward Difference Optimization For Sample Reweighting In Offline RLHF [18.62836654699957]
現在のオフラインRLHFは、レスポンス間の"通常の関係"のみをキャプチャし、他よりもどのくらい好まれるかという決定的な側面を見渡します。
本稿では,リワード差分最適化(Reward Difference Optimization, RDO)と呼ばれるシンプルな解を提案する。
HHとTL;DRデータセット上の7B LLMを用いた実験は、自動測定と人的評価の両方において、本手法の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-08-18T07:04:16Z) - Hybrid Preference Optimization: Augmenting Direct Preference Optimization with Auxiliary Objectives [0.5120567378386615]
大規模言語モデル(LLM)を協調するハイブリッドアプローチを提案する。
DPO の暗黙的な報酬分解に対する単純な拡張により、任意の補助報酬の集合を最大化するために LLM をチューニングできる。
提案手法であるHybrid Preference Optimization (HPO) は,ユーザの好みと補助的な設計目的の両方に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2024-05-28T08:35:48Z) - On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization [33.331389392270665]
選好マッチング(PM) RLHF はBradley-Terry--Luce/Plackett--Luce モデルの下で、大きな言語モデルと報酬モデルの選好分布を整合させる新しいアプローチである。
我々のアプローチの中心はPM正則化器であり、応答上の LLM のポリシー確率分布の負の対数の形を取る。
本稿では,自然言語生成に適した条件付きPM RLHFを提案する。
論文 参考訳(メタデータ) (2024-05-26T07:00:05Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
命令応答対に対して協調的に好みを抽出する新しい軸を提案する。
命令と応答ペアを併用することで、大きな言語モデルのアライメントを大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - On Diversified Preferences of Large Language Model Alignment [51.26149027399505]
本稿では,様々な大きさの報酬モデルに対する実験スケーリング法則の定量的解析を行った。
分析の結果,ヒトの嗜好の多様化による影響は,モデルサイズとデータサイズの両方に依存することが明らかとなった。
十分なキャパシティを持つ大きなモデルでは、さまざまな好みによるネガティブな影響が軽減される一方、より小さなモデルはそれらに対応するのに苦労する。
論文 参考訳(メタデータ) (2023-12-12T16:17:15Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。