Conformalized High-Density Quantile Regression via Dynamic Prototypes-based Probability Density Estimation
- URL: http://arxiv.org/abs/2411.01266v1
- Date: Sat, 02 Nov 2024 14:36:12 GMT
- Title: Conformalized High-Density Quantile Regression via Dynamic Prototypes-based Probability Density Estimation
- Authors: Batuhan Cengiz, Halil Faruk Karagoz, Tufan Kumbasar,
- Abstract summary: We introduce a conformalized high-density quantile regression approach with a dynamically adaptive set of prototypes.
Our method optimize the set of prototypes by adaptively adding, deleting, and relocating quantization bins.
Experiments across diverse datasets and dimensionalities confirm that our method consistently achieves high-quality prediction regions.
- Score: 2.526146573337397
- License:
- Abstract: Recent methods in quantile regression have adopted a classification perspective to handle challenges posed by heteroscedastic, multimodal, or skewed data by quantizing outputs into fixed bins. Although these regression-as-classification frameworks can capture high-density prediction regions and bypass convex quantile constraints, they are restricted by quantization errors and the curse of dimensionality due to a constant number of bins per dimension. To address these limitations, we introduce a conformalized high-density quantile regression approach with a dynamically adaptive set of prototypes. Our method optimizes the set of prototypes by adaptively adding, deleting, and relocating quantization bins throughout the training process. Moreover, our conformal scheme provides valid coverage guarantees, focusing on regions with the highest probability density. Experiments across diverse datasets and dimensionalities confirm that our method consistently achieves high-quality prediction regions with enhanced coverage and robustness, all while utilizing fewer prototypes and memory, ensuring scalability to higher dimensions. The code is available at https://github.com/batuceng/max_quantile .
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Deep Non-Crossing Quantiles through the Partial Derivative [0.6299766708197883]
Quantile Regression provides a way to approximate a single conditional quantile.
Minimisation of the QR-loss function does not guarantee non-crossing quantiles.
We propose a generic deep learning algorithm for predicting an arbitrary number of quantiles.
arXiv Detail & Related papers (2022-01-30T15:35:21Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty
Quantification [15.94100899123465]
A model that predicts the true conditional quantiles for each input, at all quantile levels, presents a correct and efficient representation of the underlying uncertainty.
Current quantile-based methods focus on optimizing the so-called pinball loss.
We develop new quantile methods that address these shortcomings.
arXiv Detail & Related papers (2020-11-18T23:51:23Z) - Variable Skipping for Autoregressive Range Density Estimation [84.60428050170687]
We show a technique, variable skipping, for accelerating range density estimation over deep autoregressive models.
We show that variable skipping provides 10-100$times$ efficiency improvements when targeting challenging high-quantile error metrics.
arXiv Detail & Related papers (2020-07-10T19:01:40Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.