Interacting Large Language Model Agents. Interpretable Models and Social Learning
- URL: http://arxiv.org/abs/2411.01271v1
- Date: Sat, 02 Nov 2024 14:49:34 GMT
- Title: Interacting Large Language Model Agents. Interpretable Models and Social Learning
- Authors: Adit Jain, Vikram Krishnamurthy,
- Abstract summary: This paper develops theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical processing and microeconomics.
Because interacting LLMAs learn from prior decisions and external inputs, they exhibit bias and herding behavior.
- Score: 13.440621354486906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making by interacting LLMAs remains unexplored. Motivated by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control algorithms that enable LLMAs to interact and perform Bayesian inference. Because interacting LLMAs learn from prior decisions and external inputs, they exhibit bias and herding behavior. Thus, developing interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors. This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics that an individual LLMA satisfies the sufficient conditions for rationally inattentive (bounded rationality) utility maximization and, given an observation, the LLMA chooses an action that maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models for LLMAs that interact sequentially with each other and the environment while performing Bayesian inference. Our models capture the herding behavior exhibited by interacting LLMAs. Third, we propose a stochastic control framework to delay herding and improve state estimation accuracy under two settings: (a) centrally controlled LLMAs and (b) autonomous LLMAs with incentives. Throughout the paper, we demonstrate the efficacy of our methods on real datasets for hate speech classification and product quality assessment, using open-source models like Mistral and closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social learning when interacting.
Related papers
- Efficient or Powerful? Trade-offs Between Machine Learning and Deep Learning for Mental Illness Detection on Social Media [0.036136619420474754]
Social media platforms provide valuable insights into mental health trends by capturing user-generated discussions on conditions such as depression, anxiety, and suicidal ideation.
Machine learning (ML) and deep learning (DL) models have been increasingly applied to classify mental health conditions from textual data.
This study evaluates multiple ML models, including logistic regression, random forest, and LightGBM, alongside deep learning architectures such as ALBERT and Gated Recurrent Units (GRUs)
Our findings indicate that ML and DL models achieve comparable classification performance on medium-sized datasets.
arXiv Detail & Related papers (2025-03-03T00:51:41Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
We introduce a framework in which a model must determine the factors influencing a hidden reward function.
We investigate whether approaches such as self- throughput and increased inference time improve information gathering efficiency.
arXiv Detail & Related papers (2024-12-09T12:27:21Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning [48.59516337905877]
Learning a good representation is a crucial challenge for Reinforcement Learning (RL) agents.
Recent work has developed theoretical insights into these algorithms.
We take a step towards bridging the gap between theory and practice by analyzing an action-conditional self-predictive objective.
arXiv Detail & Related papers (2024-06-04T07:22:12Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
Interpretability is essential for legal, ethical, and practical reasons.
High-performance models can suffer from spurious interactions with redundant features and single-feature dominance.
In this paper, we explore novel approaches to address these issues by utilizing alternate Cross-feature selection, ensemble features and model configuration alteration techniques.
arXiv Detail & Related papers (2023-07-17T13:47:41Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.