論文の概要: Causal reasoning in difference graphs
- arxiv url: http://arxiv.org/abs/2411.01292v1
- Date: Sat, 02 Nov 2024 16:01:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:43.770420
- Title: Causal reasoning in difference graphs
- Title(参考訳): 差分グラフにおける因果推論
- Authors: Charles K. Assaad,
- Abstract要約: これは、様々な公衆衛生応用の可能性を秘めている因果推論に対する新しいアプローチを提供する。
特に、非パラメトリックフレームワークにおける全因果変化と全体効果の同定、および線形文脈における直接因果変化と直接効果に焦点を当てている。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License:
- Abstract: In epidemiology, understanding causal mechanisms across different populations is essential for designing effective public health interventions. Recently, difference graphs have been introduced as a tool to visually represent causal variations between two distinct populations. While there has been progress in inferring these graphs from data through causal discovery methods, there remains a gap in systematically leveraging their potential to enhance causal reasoning. This paper addresses that gap by establishing conditions for identifying causal changes and effects using difference graphs and observational data. It specifically focuses on identifying total causal changes and total effects in a nonparametric framework, as well as direct causal changes and direct effects in a linear context. In doing so, it provides a novel approach to causal reasoning that holds potential for various public health applications.
- Abstract(参考訳): 疫学では、様々な集団の因果関係を理解することは、効果的な公衆衛生介入を設計するのに不可欠である。
近年,2つの異なる集団間の因果変化を視覚的に表すツールとして差分グラフが導入された。
因果探索法によってデータからこれらのグラフを推定する方法は進歩してきたが、因果推論を強化するためにそれらのポテンシャルを体系的に活用することのギャップは依然として残っている。
本稿では,この差分グラフと観測データを用いて因果変化と効果を特定する条件を確立することで,そのギャップを解消する。
特に、非パラメトリックフレームワークにおける全因果変化とトータル効果の同定、および線形文脈における直接因果変化と直接効果に焦点を当てている。
そうすることで、様々な公衆衛生応用の可能性を秘めている因果推論に対する新しいアプローチを提供する。
関連論文リスト
- Predicting perturbation targets with causal differential networks [23.568795598997376]
我々は、因果グラフを観察および介入データセットから推定するために、償却因果探索モデルを用いる。
我々は、これらのペアグラフを、教師付き学習フレームワークで介入された変数の集合にマッピングすることを学ぶ。
このアプローチは、7つのシングルセルトランスクリプトミクスデータセットの摂動モデリングのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-10-04T12:48:21Z) - Unifying Causal Representation Learning with the Invariance Principle [21.375611599649716]
因果表現学習は、高次元観測から潜伏因果変数を復元することを目的としている。
我々の主な貢献は、既存の因果表現学習アプローチの多くが、その表現を既知のデータ対称性に方法論的に整合させることである。
論文 参考訳(メタデータ) (2024-09-04T14:51:36Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - A Survey on Causal Discovery: Theory and Practice [2.741266294612776]
因果推論は、原因とその影響を結びつける基礎となる関係を定量化するように設計されている。
本稿では,最近の進歩を統一的に検討し,既存のアルゴリズムを一貫した概要を提供し,有用なツールやデータを報告する。
論文 参考訳(メタデータ) (2023-05-17T08:18:56Z) - iCITRIS: Causal Representation Learning for Instantaneous Temporal
Effects [36.358968799947924]
因果表現学習は、基礎となる因果変数とその関係を高次元観測から識別するタスクである。
時間的シーケンスにおける瞬時効果を処理できる因果表現学習法iCITRISを提案する。
3つのビデオデータセットの実験において、iCITRISは因果因子とその因果グラフを正確に識別する。
論文 参考訳(メタデータ) (2022-06-13T13:56:40Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Fuzzy Stochastic Timed Petri Nets for Causal properties representation [68.8204255655161]
因果関係はしばしば有向グラフで表され、原因を示すノードと因果関係を表すリンクがある。
因果シナリオをグラフィカルに表現するために使われる一般的な方法は、ニューロン、真理表、因果ベイズネットワーク、認知地図、ペトリネットである。
従来のモデルは、前述のプロパティのいくつかを別々に表現できるが、それら全てをはっきりと説明しようとはしないことを示す。
論文 参考訳(メタデータ) (2020-11-24T13:22:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。