Privacy Leakage Overshadowed by Views of AI: A Study on Human Oversight of Privacy in Language Model Agent
- URL: http://arxiv.org/abs/2411.01344v2
- Date: Thu, 30 Jan 2025 20:31:49 GMT
- Title: Privacy Leakage Overshadowed by Views of AI: A Study on Human Oversight of Privacy in Language Model Agent
- Authors: Zhiping Zhang, Bingcan Guo, Tianshi Li,
- Abstract summary: Language model (LM) agents that act on users' behalf for personal tasks can boost productivity, but are also susceptible to unintended privacy leakage risks.
We present the first study on people's capacity to oversee the privacy implications of the LM agents.
- Score: 1.5020330976600738
- License:
- Abstract: Language model (LM) agents that act on users' behalf for personal tasks (e.g., replying emails) can boost productivity, but are also susceptible to unintended privacy leakage risks. We present the first study on people's capacity to oversee the privacy implications of the LM agents. By conducting a task-based survey (N=300), we investigate how people react to and assess the response generated by LM agents for asynchronous interpersonal communication tasks, compared with a response they wrote. We found that people may favor the agent response with more privacy leakage over the response they drafted or consider both good, leading to an increased harmful disclosure from 15.7% to 55.0%. We further identified six privacy profiles to characterize distinct patterns of concerns, trust, and privacy preferences in LM agents. Our findings shed light on designing agentic systems that enable privacy-preserving interactions and achieve bidirectional alignment on privacy preferences to help users calibrate trust.
Related papers
- Multi-P$^2$A: A Multi-perspective Benchmark on Privacy Assessment for Large Vision-Language Models [65.2761254581209]
We evaluate the privacy preservation capabilities of 21 open-source and 2 closed-source Large Vision-Language Models (LVLMs)
Based on Multi-P$2$A, we evaluate the privacy preservation capabilities of 21 open-source and 2 closed-source LVLMs.
Our results reveal that current LVLMs generally pose a high risk of facilitating privacy breaches.
arXiv Detail & Related papers (2024-12-27T07:33:39Z) - On Active Privacy Auditing in Supervised Fine-tuning for White-Box Language Models [7.275432177367344]
Parsing is designed to identify and quantify privacy leakage risks during the supervised fine-tuning of language models (LMs)
We have improved the effectiveness of white-box membership inference attacks (MIAs) on large LMs including GPT-2, Llama2, and certain variants of them.
Our research aims to provide the SFT community of LMs with a reliable, ready-to-use privacy auditing tool, and to offer valuable insights into safeguarding privacy during the fine-tuning process.
arXiv Detail & Related papers (2024-11-11T15:46:07Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Air Gap: Protecting Privacy-Conscious Conversational Agents [44.04662124191715]
We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand.
We introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task.
arXiv Detail & Related papers (2024-05-08T16:12:45Z) - Human-Centered Privacy Research in the Age of Large Language Models [31.379232599019915]
This SIG aims to bring together researchers with backgrounds in usable security and privacy, human-AI collaboration, NLP, or any other related domains to share their perspectives and experiences on this problem.
arXiv Detail & Related papers (2024-02-03T02:32:45Z) - Relying on the Unreliable: The Impact of Language Models' Reluctance to Express Uncertainty [53.336235704123915]
We investigate how LMs incorporate confidence in responses via natural language and how downstream users behave in response to LM-articulated uncertainties.
We find that LMs are reluctant to express uncertainties when answering questions even when they produce incorrect responses.
We test the risks of LM overconfidence by conducting human experiments and show that users rely heavily on LM generations.
Lastly, we investigate the preference-annotated datasets used in post training alignment and find that humans are biased against texts with uncertainty.
arXiv Detail & Related papers (2024-01-12T18:03:30Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.