Adaptive Conformal Inference by Particle Filtering under Hidden Markov Models
- URL: http://arxiv.org/abs/2411.01558v1
- Date: Sun, 03 Nov 2024 13:15:32 GMT
- Title: Adaptive Conformal Inference by Particle Filtering under Hidden Markov Models
- Authors: Xiaoyi Su, Zhixin Zhou, Rui Luo,
- Abstract summary: This paper proposes an adaptive conformal inference framework that leverages a particle filtering approach to address this issue.
Rather than directly focusing on the unobservable hidden state, we innovatively use weighted particles as an approximation of the actual posterior distribution of the hidden state.
- Score: 8.505262415500168
- License:
- Abstract: Conformal inference is a statistical method used to construct prediction sets for point predictors, providing reliable uncertainty quantification with probability guarantees. This method utilizes historical labeled data to estimate the conformity or nonconformity between predictions and true labels. However, conducting conformal inference for hidden states under hidden Markov models (HMMs) presents a significant challenge, as the hidden state data is unavailable, resulting in the absence of a true label set to serve as a conformal calibration set. This paper proposes an adaptive conformal inference framework that leverages a particle filtering approach to address this issue. Rather than directly focusing on the unobservable hidden state, we innovatively use weighted particles as an approximation of the actual posterior distribution of the hidden state. Our goal is to produce prediction sets that encompass these particles to achieve a specific aggregate weight sum, referred to as the aggregated coverage level. The proposed framework can adapt online to the time-varying distribution of data and achieve the defined marginal aggregated coverage level in both one-step and multi-step inference over the long term. We verify the effectiveness of this approach through a real-time target localization simulation study.
Related papers
- Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
We develop more reliable methods for uncertainty in neural TPP models via the framework of conformal prediction.
A primary objective is to generate a distribution-free joint prediction region for an event's arrival time and mark, with a finite-sample marginal coverage guarantee.
arXiv Detail & Related papers (2024-01-09T15:28:29Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
Conformal prediction and split conformal prediction offer a distribution-free approach to estimating prediction intervals with statistical guarantees.
Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage.
This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction.
arXiv Detail & Related papers (2023-09-15T11:10:46Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
We analyze a data-driven procedure for obtaining empirically reliable approximate conditional coverage.
We demonstrate the potential for substantial (and otherwise unknowable) under-coverage with split-conformal alternatives with marginal coverage guarantees.
arXiv Detail & Related papers (2022-05-28T02:59:05Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.