Flexible Coded Distributed Convolution Computing for Enhanced Straggler Resilience and Numerical Stability in Distributed CNNs
- URL: http://arxiv.org/abs/2411.01579v2
- Date: Wed, 23 Jul 2025 02:45:38 GMT
- Title: Flexible Coded Distributed Convolution Computing for Enhanced Straggler Resilience and Numerical Stability in Distributed CNNs
- Authors: Shuo Tan, Rui Liu, Xuesong Han, XianLei Long, Kai Wan, Linqi Song, Yong Li,
- Abstract summary: This paper introduces the Flexible Coded Distributed Convolution Computing framework.<n>It enhances straggler resilience and numerical stability in distributed CNNs.<n> Empirical results validate the framework's effectiveness in computational efficiency, straggler resilience, and scalability across various CNN architectures.
- Score: 25.089033467575902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying Convolutional Neural Networks (CNNs) on resource-constrained devices necessitates efficient management of computational resources, often via distributed environments susceptible to latency from straggler nodes. This paper introduces the Flexible Coded Distributed Convolution Computing (FCDCC) framework to enhance straggler resilience and numerical stability in distributed CNNs. We extend Coded Distributed Computing (CDC) with Circulant and Rotation Matrix Embedding (CRME) which was originally proposed for matrix multiplication to high-dimensional tensor convolution. For the proposed scheme, referred to as the Numerically Stable Coded Tensor Convolution (NSCTC) scheme, we also propose two new coded partitioning schemes: Adaptive-Padding Coded Partitioning (APCP) for the input tensor and Kernel-Channel Coded Partitioning (KCCP) for the filter tensor. These strategies enable linear decomposition of tensor convolutions and encoding them into CDC subtasks, combining model parallelism with coded redundancy for robust and efficient execution. Theoretical analysis identifies an optimal trade-off between communication and storage costs. Empirical results validate the framework's effectiveness in computational efficiency, straggler resilience, and scalability across various CNN architectures.
Related papers
- Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming [0.0]
Convolutional Neural Networks (CNNs) are pivotal in computer vision and Big Data analytics but demand significant computational resources when trained on large-scale datasets.<n>We propose a hybrid optimization method that combines Unconstrained Binary Quadratic Programming (UBQP) with Gradient Descent (SGD) to accelerate CNN training.<n>Our approach achieves a 10--15% accuracy improvement over a standard BP-CNN baseline while maintaining similar execution times.
arXiv Detail & Related papers (2025-05-30T21:25:31Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Distributed Compressed Sparse Row Format for Spiking Neural Network
Simulation, Serialization, and Interoperability [0.48733623015338234]
We discuss a parallel extension of a widely used format for efficiently representing sparse matrices, the compressed sparse row (CSR)
We contend that organizing additional network information, such as neuron and synapse state, in alignment with its adjacency as dCSR provides a straightforward partition-based distribution of network state.
We provide a potential implementation, and put it forward for adoption within the neural computing community.
arXiv Detail & Related papers (2023-04-12T03:19:06Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
We study inference acceleration using distributed convolutional neural networks (CNNs) in collaborative edge computing network.
We propose a novel collaborative edge computing using fused-layer parallelization to partition a CNN model into multiple blocks of convolutional layers.
arXiv Detail & Related papers (2022-07-22T18:38:11Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution.
We proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture.
Various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms.
arXiv Detail & Related papers (2022-01-18T11:16:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Design and Scaffolded Training of an Efficient DNN Operator for Computer
Vision on the Edge [3.3767251810292955]
FuSeConv is a drop-in replacement for depthwise separable convolutions.
FuSeConv factorizes convolution fully along their spatial and depth dimensions.
Neural Operator Scaffolding scaffolds the training of FuSeConv by distilling knowledge from depthwise separable convolutions.
arXiv Detail & Related papers (2021-08-25T19:22:25Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Dynamic Clone Transformer for Efficient Convolutional Neural Netwoks [0.0]
We introduce a novel concept termed multi-path fully connected pattern (MPFC) to rethink the interdependencies of topology pattern, accuracy and efficiency for ConvNets.
Inspired by MPFC, we propose a dual-branch module named dynamic clone transformer (DCT) where one branch generates multiple replicas from inputs and another branch reforms those clones through a series of difference vectors conditional on inputs itself to produce more variants.
arXiv Detail & Related papers (2021-06-12T13:42:28Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
State-of-the-art deep neural networks (DNNs) have significant computational and data management requirements.
Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs.
The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning.
arXiv Detail & Related papers (2021-04-23T20:05:52Z) - Distributed Learning and Democratic Embeddings: Polynomial-Time Source
Coding Schemes Can Achieve Minimax Lower Bounds for Distributed Gradient
Descent under Communication Constraints [46.17631511884969]
We consider the problem of compressing a vector in the n-dimensional Euclidean space, subject to a bit-budget of R-bits per dimension.
We show that Democratic and Near-Democratic source-coding schemes are (near) optimal in the sense that the covering efficiency of the resulting quantizer is either dimension independent, or has a very weak logarithmic dependence.
We propose a distributed optimization algorithm: DGD-DEF, which employs our proposed coding strategy, and achieves the minimax optimal convergence rate to within (near) constant factors.
arXiv Detail & Related papers (2021-03-13T00:04:11Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.