論文の概要: GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving
- arxiv url: http://arxiv.org/abs/2403.19098v2
- Date: Sun, 7 Apr 2024 03:49:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 00:16:23.910266
- Title: GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving
- Title(参考訳): GraphAD: エンドツーエンドの自動運転のためのインタラクションシーングラフ
- Authors: Yunpeng Zhang, Deheng Qian, Ding Li, Yifeng Pan, Yong Chen, Zhenbao Liang, Zhiyao Zhang, Shurui Zhang, Hongxu Li, Maolei Fu, Yun Ye, Zhujin Liang, Yi Shan, Dalong Du,
- Abstract要約: 我々は,エゴ車両,道路エージェント,地図要素間の相互作用をモデル化するための統合手法として,インタラクションシーングラフ(ISG)を提案する。
提案手法をnuScenesデータセット上で評価した。
- 参考スコア(独自算出の注目度): 16.245949174447574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling complicated interactions among the ego-vehicle, road agents, and map elements has been a crucial part for safety-critical autonomous driving. Previous works on end-to-end autonomous driving rely on the attention mechanism for handling heterogeneous interactions, which fails to capture the geometric priors and is also computationally intensive. In this paper, we propose the Interaction Scene Graph (ISG) as a unified method to model the interactions among the ego-vehicle, road agents, and map elements. With the representation of the ISG, the driving agents aggregate essential information from the most influential elements, including the road agents with potential collisions and the map elements to follow. Since a mass of unnecessary interactions are omitted, the more efficient scene-graph-based framework is able to focus on indispensable connections and leads to better performance. We evaluate the proposed method for end-to-end autonomous driving on the nuScenes dataset. Compared with strong baselines, our method significantly outperforms in the full-stack driving tasks, including perception, prediction, and planning. Code will be released at https://github.com/zhangyp15/GraphAD.
- Abstract(参考訳): エゴ車、道路エージェント、地図要素間の複雑な相互作用をモデル化することは、安全クリティカルな自動運転にとって重要な要素である。
エンド・ツー・エンドの自動運転に関するこれまでの研究は、異種相互作用を扱うための注意機構に依存しており、これは幾何学的先行を捉えることができず、計算的にも集中的である。
本稿では,エゴ車両,道路エージェント,地図要素間の相互作用をモデル化するための統合手法として,インタラクションシーングラフ(ISG)を提案する。
ISGの表現により、駆動エージェントは、衝突の可能性のある道路エージェントや従うべき地図要素など、最も影響力のある要素から重要な情報を収集する。
大量の不要なインタラクションが省略されるため、より効率的なシーングラフベースのフレームワークは、必須のコネクションに集中することができ、パフォーマンスが向上する。
提案手法をnuScenesデータセット上で評価した。
強いベースラインと比較して,本手法は認識,予測,計画などのフルスタック駆動タスクにおいて有意に優れていた。
コードはhttps://github.com/zhangyp15/GraphADでリリースされる。
関連論文リスト
- SocialFormer: Social Interaction Modeling with Edge-enhanced Heterogeneous Graph Transformers for Trajectory Prediction [3.733790302392792]
SocialFormerはエージェント間相互作用を意識した軌道予測手法である。
本稿では,エージェント動作の時間的社会的挙動をモデル化するために,ゲートリカレント単位(GRU)に基づくテンポラルエンコーダを提案する。
一般的なnuScenesベンチマークの軌道予測タスクとしてSocialFormerを評価し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-06T19:47:23Z) - ProIn: Learning to Predict Trajectory Based on Progressive Interactions for Autonomous Driving [11.887346755144485]
プログレッシブ・インタラクション・ネットワークが提案され、エージェントの特徴が関係する地図に徐々に焦点を合わせることができる。
このネットワークは、グラフ畳み込みを通じて、地図制約の複雑な影響をエージェントの特徴に徐々にエンコードする。
実験は、既存の1段階の相互作用に対する進歩的相互作用の優越性を検証した。
論文 参考訳(メタデータ) (2024-03-25T02:38:34Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
本稿では,オブジェクトの提案から潜在的意味関係を予測するグラフ畳み込みネットワークRSG-Netを提案する。
実験の結果、このネットワークはロードシーングラフデータセットに基づいてトレーニングされており、エゴ車両周辺のオブジェクト間の潜在的な意味関係を効率的に予測できることがわかった。
論文 参考訳(メタデータ) (2022-07-16T12:40:17Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
本稿では,動き予測のための反復的,注意に基づくアプローチを提案する。
Decoder Fusion RNN (DF-RNN) は、リカレント動作エンコーダ、エージェント間マルチヘッドアテンションモジュール、コンテキスト認識デコーダで構成される。
提案手法の有効性をArgoverseモーション予測データセットで検証し,その性能を公開ベンチマークで示す。
論文 参考訳(メタデータ) (2021-08-12T15:53:37Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks [19.582873794287632]
道路車両を運転する上で重要な側面は、他の道路利用者と対話し、その意図を評価し、リスクを意識した戦術決定を行うことである。
本稿では,交通グラフに基づくエゴセントリックなビューのための新しいドライビングフレームワークを提案する。
我々は,リスクオブジェクト識別の課題を改善することにより,リスク認識表現を学習する。
論文 参考訳(メタデータ) (2020-11-17T15:49:22Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
本稿では,トラフィックアクタと静的および動的トラフィック要素の両方をノードが表現するハイブリッドグラフを提案する。
アクターとトラフィック要素間の時間的相互作用(例えば、停止と移動)の異なるモードは、グラフエッジによって明示的にモデル化される。
提案するモデルであるTrafficGraphNetは,高いレベルの解釈性を維持しつつ,最先端の軌道予測精度を実現する。
論文 参考訳(メタデータ) (2020-09-27T18:20:03Z) - Traffic Agent Trajectory Prediction Using Social Convolution and
Attention Mechanism [57.68557165836806]
本稿では,自律走行車周辺における標的エージェントの軌道予測モデルを提案する。
対象エージェントの履歴トラジェクトリをアテンションマスクとしてエンコードし、ターゲットエージェントとその周辺エージェント間の対話関係をエンコードするソーシャルマップを構築する。
提案手法の有効性を検証するため,提案手法を公開データセット上の複数の手法と比較し,20%の誤差低減を実現した。
論文 参考訳(メタデータ) (2020-07-06T03:48:08Z) - Interaction Graphs for Object Importance Estimation in On-road Driving
Videos [9.344790309080283]
ドライバーのリアルタイム意思決定における各オブジェクトの重要性を推定する学習は、人間の運転行動をよりよく理解するのに役立ちます。
相互作用グラフを用いたオブジェクト重要度推定のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-12T22:28:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。