Genuine non-Gaussian entanglement: quantum correlations beyond Hong-Ou-Mandel
- URL: http://arxiv.org/abs/2411.01609v1
- Date: Sun, 03 Nov 2024 15:30:06 GMT
- Title: Genuine non-Gaussian entanglement: quantum correlations beyond Hong-Ou-Mandel
- Authors: Xiaobin Zhao, Pengcheng Liao, Quntao Zhuang,
- Abstract summary: We introduce the notion of genuine non-Gaussian entanglement (NGE)
We prove that NOON states with $Nge 3$ are indeed among the NGE class.
We demonstrate that the tomography process of pure free states can be performed efficiently.
- Score: 0.40964539027092906
- License:
- Abstract: Hong-Ou-Mandel effect is an important demonstration of particle indistinguishability, when identical single photons interfere at a beamsplitter to generate the two-photon entangled NOON state. On the other hand, NOON states with $N\ge3$ photons have long been conjectured beyond the deterministic generation of photon interference. To characterize the separation, we introduce the notion of genuine non-Gaussian entanglement (NGE), which cannot be generated via a generalized Hong-Ou-Mandel experiment, with Gaussian protocols extending the beamsplitter and separable input states replacing the single photons. We establish a resource theory to characterize such quantum correlations beyond Hong-Ou-Mandel and prove that NOON states with $N\ge 3$ are indeed among the NGE class. With the generalized Hong-Ou-Mandel protocol as free operations, we introduce two monotones to characterize genuine non-Gaussian entanglement: one derived from the entanglement entropy and the other from the minimal extension size required to convert a state into a free state. Finally, we demonstrate that the tomography process of pure free states can be performed efficiently, while all learning protocols of states with genuine non-Gaussian entanglement require exponential overheads connected to the monotone. This implies that states generated in Boson sampling are efficiently learnable despite its measurement statistics being hard to sample from.
Related papers
- Generating three-photon Rabi oscillations without a large-detuning condition [6.435485662083251]
In quantum Rabi model, a three-photon resonance occurs when the cavity field bare frequency is about 1/3 of the atomic transition frequency.
We show that the resonance can also be generated in the absence of the 1/3 condition by employing an artificial atom with tunable transition frequency.
We derive an effective Hamiltonian to determine the magnitude of the energy splitting and the resonance position.
arXiv Detail & Related papers (2024-08-01T11:13:02Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - Hierarchy of Genuine Tripartite Non-Gaussian Entanglement [2.9798142048357703]
Triple-photon states generated by three-mode spontaneous parametric down-conversion are the paradigm of unconditional non-Gaussian states.
We propose a hierarchy of sufficient and necessary conditions for separability of spontaneously-generated three-mode non-Gaussian states.
We apply our criteria to triple-photon states revealing that they are fully inseparable and genuinely entangled in moments of order 3n.
arXiv Detail & Related papers (2022-05-24T10:13:12Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
We show that the nonlocality of single-photon entangled states can nevertheless be revealed in a quantum network made only of beamsplitters and photodetectors.
Our results show that single-photon entanglement may constitute a promising solution to generate genuine network-nonlocal correlations useful for Bell-based quantum information protocols.
arXiv Detail & Related papers (2021-08-03T20:13:24Z) - Quantum illumination with noisy probes: Conditional advantages of non-Gaussianity [0.9999629695552195]
Entangled states, like the two-mode squeezed vacuum state, are known to give quantum advantage in the illumination protocol.
We use non-Gaussian photon-added and -subtracted states, affected by local Gaussian noise on top of the omnipresent thermal noise, as probes in the illumination protocol.
arXiv Detail & Related papers (2021-07-06T17:37:45Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Non-Gaussian Nature and Entanglement of Spontaneous Parametric
Nondegenerate Triple-Photon Generation [0.415623340386296]
We show that the triple-photon state generated by three-photon spontaneous parametric down-conversion is a pure super-Gaussian resource of non-Gaussian entanglement.
We propose a model to prepare two-mode non-Gaussian entangled states with tunable non-Gaussianity based on quadrature projection measurements.
arXiv Detail & Related papers (2020-09-14T12:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.