Generating three-photon Rabi oscillations without a large-detuning condition
- URL: http://arxiv.org/abs/2408.00468v1
- Date: Thu, 1 Aug 2024 11:13:02 GMT
- Title: Generating three-photon Rabi oscillations without a large-detuning condition
- Authors: Ke-Xiong Yan, Yuan Qiu, Yang Xiao, Ye-Hong Chen, Yan Xia,
- Abstract summary: In quantum Rabi model, a three-photon resonance occurs when the cavity field bare frequency is about 1/3 of the atomic transition frequency.
We show that the resonance can also be generated in the absence of the 1/3 condition by employing an artificial atom with tunable transition frequency.
We derive an effective Hamiltonian to determine the magnitude of the energy splitting and the resonance position.
- Score: 6.435485662083251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well known that in the quantum Rabi model, a three-photon resonance occurs when the cavity field bare frequency is about 1/3 of the atomic transition frequency. In this manuscript, we show that the resonance can also be generated in the absence of the 1/3 condition by employing an artificial atom with tunable transition frequency. To realize the protocol, the modulation frequency should be comparable to the cavity frequency in order to induce a counter-rotating interaction in the effective Hamiltonian. In this way, three-photon Rabi oscillations can be observed in a small-detuning regime, thus avoiding the excitation of high-energy states. We derive an effective Hamiltonian (equivalent to the anisotropic Rabi model Hamiltonian) to determine the magnitude of the energy splitting and the resonance position. Numerical simulations results show that the protocol not only generates a three-photon resonance, but also has a detectable output photon flux. We hope the protocol can be exploited for the realization of Fock-state sources and the generation of multiparticle entanglement.
Related papers
- Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Application of the Schwinger Oscillator Construct of Angular Momentum to
an Interpretation of the Superconducting Transmon Qubit [0.0]
An angular-momentum-like basis is defined for quantum-entangled, two-photon states that form an angular-momentum-like basis.
This basis provides a convenient starting point to study error-inducing effects of transmon anharmonicity, surrounding-environment decoherence, and random stray fields on qubit state and gate operations.
The generality of the Schwinger angular-momentum construct allows it to be applied to other superconducting charge qubits.
arXiv Detail & Related papers (2024-01-17T19:50:12Z) - Cavity-enhanced excitation of a quantum dot in the picosecond regime [0.4721851604275367]
We investigate a scheme in which a single emitter, a semiconductor quantum dot, is embedded in a microcavity.
By linking experiment to theory, we show that the best population inversion is achieved with a laser pulse detuned from the quantum emitter.
arXiv Detail & Related papers (2023-01-31T17:47:57Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Three-photon excitation of quantum two-level systems [0.0]
We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process.
Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes.
We exploit this technique to probe intrinsic properties of InGaN quantum dots.
arXiv Detail & Related papers (2022-02-04T09:20:24Z) - Swing-up of quantum emitter population using detuned pulses [0.0]
We propose a coherent excitation scheme using off-resonant pulses.
This is overcome by using a frequency modulated pulse to swing up the excited state population.
We theoretically analyze the applicability of the scheme to a semiconductor quantum dot.
arXiv Detail & Related papers (2021-11-19T14:16:12Z) - Multiphoton resonance and chiral transport in the generalized Rabi model [0.0]
We derive effective Hamiltonians for theoretically multiphoton resonances in the generalized Rabi model (gRM)
We study the interplay between multiphoton resonance and chiral transport of photon Fock states in a resonator junction with broken time-reversal symmetry.
Depending on the qubit-photon interaction and photon-hopping amplitude, we find that the system can demonstrate different short-time dynamics.
arXiv Detail & Related papers (2020-04-05T19:17:27Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.