論文の概要: Leveraging Microservices Architecture for Dynamic Pricing in the Travel Industry: Algorithms, Scalability, and Impact on Revenue and Customer Satisfaction
- arxiv url: http://arxiv.org/abs/2411.01636v1
- Date: Sun, 03 Nov 2024 17:24:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:31.250323
- Title: Leveraging Microservices Architecture for Dynamic Pricing in the Travel Industry: Algorithms, Scalability, and Impact on Revenue and Customer Satisfaction
- Title(参考訳): 旅行業界における動的価格設定のためのマイクロサービスアーキテクチャを活用する - アルゴリズム、スケーラビリティ、収益と顧客満足度への影響
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract要約: 本研究では,旅行分野を対象としたリアルタイム動的価格体系の実装について検討する。
このシステムは、需要、競合価格、その他の外部状況などの要因をリアルタイムに解決するように設計されている。
コントロールされたシミュレーションと実生活のアプリケーションの両方で、収益生成が22%、価格応答時間が17%改善した。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License:
- Abstract: This research investigates the implementation of a real-time, microservices-oriented dynamic pricing system for the travel sector. The system is designed to address factors such as demand, competitor pricing, and other external circumstances in real-time. Both controlled simulation and real-life application showed a respectable gain of 22% in revenue generation and a 17% improvement in pricing response time which concern the issues of scaling and flexibility of classical pricing mechanisms. Demand forecasting, competitor pricing strategies, and event-based pricing were implemented as separate microservices to enhance their scalability and reduce resource consumption by 30% during peak loads. Customers were also more content as depicted by a 15% increase in satisfaction score post-implementation given the appreciation of more appropriate pricing. This research enhances the existing literature with practical illustrations of the possible application of microservices technology in developing dynamic pricing solutions in a complex and data-driven context. There exist however areas for improvement for instance inter-service latency and the need for extensive real-time data pipelines. The present research goes on to suggest combining these with direct data capture from customer behavior at the same time as machine learning capacity developments in pricing algorithms to assist in more accurate real time pricing. It is determined that the use of microservices is a reasonable and efficient model for dynamic pricing, allowing the tourism sector to employ evidence-based and customer centric pricing techniques, which ensures that their profits are not jeopardized because of the need for customers.
- Abstract(参考訳): 本研究では,旅行部門を対象としたリアルタイムマイクロサービス指向動的価格システムの実装について検討する。
このシステムは、需要、競合価格、その他の外部状況などの要因をリアルタイムに解決するように設計されている。
コントロールされたシミュレーションと実生活のアプリケーションの両方では、収益生成が22%、価格応答時間が17%改善し、古典的な価格メカニズムのスケーリングと柔軟性の問題が懸念された。
需要予測、競合する価格戦略、イベントベースの価格設定は別個のマイクロサービスとして実装され、スケーラビリティを高め、ピーク負荷時にリソース消費を30%削減した。
顧客の満足度も15%向上し、適切な価格設定が評価されれば、満足度も向上した。
この研究は、複雑でデータ駆動のコンテキストで動的価格設定ソリューションを開発する上で、マイクロサービス技術の応用の可能性に関する実践的な例で、既存の文献を強化します。
しかしながら、例えば、サービス間レイテンシや大規模なリアルタイムデータパイプラインの必要性など、改善の領域は存在する。
本研究は、より正確なリアルタイム価格設定を支援するために、価格アルゴリズムにおける機械学習能力の発展と同時に、顧客行動から直接のデータキャプチャーと組み合わせることを提案する。
マイクロサービスの利用は、動的価格の合理的かつ効率的なモデルであると判断され、観光セクターはエビデンスベースの顧客中心の価格技術を採用し、顧客のニーズのために利益が損なわれないようにしている。
関連論文リスト
- MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
本稿では,車載メタバースにおける拡張現実(AR)サービスの学習モデルを支援するために,メタバースユーザ(MU)にインセンティブを与える新しい没入型モデルトレーディングフレームワークを提案する。
動的ネットワーク条件とプライバシの懸念を考慮して、マルチエージェントマルコフ決定プロセスとしてMSPの報酬決定を定式化する。
実験により,提案フレームワークは,実AR関連車両データセット上でのARサービスにおいて,オブジェクト検出と分類のための高価値モデルを効果的に提供できることが示されている。
論文 参考訳(メタデータ) (2024-10-25T16:20:46Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - How Much Data are Enough? Investigating Dataset Requirements for Patch-Based Brain MRI Segmentation Tasks [74.21484375019334]
ディープニューラルネットワークを確実にトレーニングするには、大規模なデータセットへのアクセスが必要である。
モデル開発に関連する時間的・経済的コストを緩和するためには,満足度の高いモデルをトレーニングするために必要なデータの量を明確に理解することが重要である。
本稿では,パッチベースのセグメンテーションネットワークのトレーニングに必要なアノテートデータの量を推定するための戦略的枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-04T13:55:06Z) - Pricing4SaaS: Towards a pricing model to drive the operation of SaaS [45.98329715499677]
本稿では,SaaS(Software as a Service)ライセンスモデルを適用したシステム価格構造に関する汎用仕様モデルを提案する。
Pricing4SaaSは、その実証された表現力によって、価格駆動型ISエンジニアリングの基盤になることを目指している。
論文 参考訳(メタデータ) (2024-03-30T10:23:55Z) - STEF-DHNet: Spatiotemporal External Factors Based Deep Hybrid Network
for Enhanced Long-Term Taxi Demand Prediction [16.07685260834701]
本稿では,外部特徴を時間情報として統合した需要予測モデルSTEF-DHNetを提案する。
転がり誤差と呼ばれる長期的性能測定値を用いて評価し、再トレーニングをせずに長期間にわたって高い精度を維持する能力を評価する。
その結果,STEF-DHNetは3つの多様なデータセット上で既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-06-26T07:37:50Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Research: Modeling Price Elasticity for Occupancy Prediction in Hotel
Dynamic Pricing [13.768319677863259]
本稿では,需要の価格弾力性を明示的にモデル化したホテル需要関数を提案する。
本モデルは,内在性問題を軽減するために慎重に設計された弾力性学習モジュールで構成され,データスパースネスに対処するためのマルチタスクフレームワークで訓練されている。
実世界のデータセットに関する包括的実験を行い、占有率予測と動的価格の両面において、最先端のベースラインよりも手法の優位性を検証した。
論文 参考訳(メタデータ) (2022-08-04T13:58:04Z) - KnowGraph-PM: a Knowledge Graph based Pricing Model for Semiconductors
Supply Chains [0.0]
KnowGraph-PMは知識グラフベースの動的価格モデルである。
価格変動は顧客との対立を引き起こす可能性がある。
セマンティックデータの統合によって、顧客に適した収益管理が可能になることを実証する。
論文 参考訳(メタデータ) (2022-05-13T10:34:57Z) - Multiple Dynamic Pricing for Demand Response with Adaptive
Clustering-based Customer Segmentation in Smart Grids [9.125875181760625]
本稿では,小売市場における需要応答に対する現実的なマルチダイナミックな価格設定手法を提案する。
提案するフレームワークは,実世界のデータセットに基づくシミュレーションによって評価される。
論文 参考訳(メタデータ) (2021-06-10T16:47:15Z) - Model Distillation for Revenue Optimization: Interpretable Personalized
Pricing [8.07517029746865]
我々は、複雑なブラックボックス機械学習アルゴリズムから知識を抽出する、カスタマイズされた、規範的なツリーベースアルゴリズムを提案する。
同様のバリュエーションで顧客を分割し、解釈可能性を維持しながら収益を最大化するような価格を定めている。
論文 参考訳(メタデータ) (2020-07-03T18:33:23Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。