論文の概要: UniGuard: Towards Universal Safety Guardrails for Jailbreak Attacks on Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2411.01703v1
- Date: Sun, 03 Nov 2024 22:19:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:21.547507
- Title: UniGuard: Towards Universal Safety Guardrails for Jailbreak Attacks on Multimodal Large Language Models
- Title(参考訳): UniGuard:マルチモーダル大規模言語モデル上でのジェイルブレイク攻撃のためのユニバーサル安全ガードレールを目指して
- Authors: Sejoon Oh, Yiqiao Jin, Megha Sharma, Donghyun Kim, Eric Ma, Gaurav Verma, Srijan Kumar,
- Abstract要約: ユニガード(UniGuard)は、モノモダルとクロスモーダルの有害信号を共同で検討する新しい安全ガードレールである。
最小の計算コストで推論中に任意の入力プロンプトにシームレスに適用できる。
LLaVA、Gemini Pro、GPT-4、MiniGPT-4、InstructBLIPなど、最先端のMLLMにまたがる印象的な一般化性を示している。
- 参考スコア(独自算出の注目度): 24.177324748033627
- License:
- Abstract: Multimodal large language models (MLLMs) have revolutionized vision-language understanding but are vulnerable to multimodal jailbreak attacks, where adversaries meticulously craft inputs to elicit harmful or inappropriate responses. We propose UniGuard, a novel multimodal safety guardrail that jointly considers the unimodal and cross-modal harmful signals. UniGuard is trained such that the likelihood of generating harmful responses in a toxic corpus is minimized, and can be seamlessly applied to any input prompt during inference with minimal computational costs. Extensive experiments demonstrate the generalizability of UniGuard across multiple modalities and attack strategies. It demonstrates impressive generalizability across multiple state-of-the-art MLLMs, including LLaVA, Gemini Pro, GPT-4, MiniGPT-4, and InstructBLIP, thereby broadening the scope of our solution.
- Abstract(参考訳): MLLM(Multimodal large language model)は、視覚言語理解に革命をもたらしたが、敵が有害または不適切な反応を引き起こすために慎重に入力を行うマルチモーダル・ジェイルブレイク攻撃に対して脆弱である。
本報告では, マルチモーダル安全ガードレールであるUniGuardを提案する。
UniGuardは、有害なコーパスで有害な応答を発生させる可能性を最小限に抑え、最小の計算コストで推論中に任意の入力プロンプトにシームレスに適用できるように訓練されている。
大規模な実験では、UniGuardが複数のモダリティや攻撃戦略にまたがって一般化可能であることを示した。
LLaVA, Gemini Pro, GPT-4, MiniGPT-4, InstructBLIP など, 最先端のMLLMにまたがる優れた一般化可能性を示し, ソリューションの範囲を広げる。
関連論文リスト
- MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - $\textit{MMJ-Bench}$: A Comprehensive Study on Jailbreak Attacks and Defenses for Multimodal Large Language Models [11.02754617539271]
我々は,MLLMのジェイルブレイク攻撃と防御技術を評価するための統合パイプラインであるtextitMMJ-Benchを紹介する。
我々は,SoTA MLLMに対する様々な攻撃方法の有効性を評価し,防御機構が防御効果とモデルの有用性に与える影響を評価する。
論文 参考訳(メタデータ) (2024-08-16T00:18:23Z) - Cross-modality Information Check for Detecting Jailbreaking in Multimodal Large Language Models [17.663550432103534]
マルチモーダル大言語モデル(MLLM)は、多モーダル情報を包括的に理解するためにLLMの能力を拡張する。
これらのモデルは、悪意のあるユーザーがターゲットモデルの安全アライメントを壊し、誤解を招く、有害な回答を発生させることができるジェイルブレイク攻撃の影響を受けやすい。
本稿では,悪質な摂動画像入力を識別するプラグイン・アンド・プレイのジェイルブレイク検出装置であるCIDERを提案する。
論文 参考訳(メタデータ) (2024-07-31T15:02:46Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Sandwich attack: Multi-language Mixture Adaptive Attack on LLMs [9.254047358707014]
我々はemphSandwich攻撃と呼ばれる新しいブラックボックス攻撃ベクトル、多言語混合攻撃を導入する。
GoogleのBard, Gemini Pro, LLaMA-2-70-B-Chat, GPT-3.5-Turbo, GPT-4, Claude-3-OPUS の5つの異なるモデルを用いた実験により, この攻撃ベクトルは敵が有害な応答を生成するために使用できることを示した。
論文 参考訳(メタデータ) (2024-04-09T18:29:42Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Visual Adversarial Examples Jailbreak Aligned Large Language Models [66.53468356460365]
視覚入力の連続的かつ高次元的な性質は、敵対的攻撃に対する弱いリンクであることを示す。
我々は、視力統合されたLLMの安全ガードレールを回避するために、視覚的敵の例を利用する。
本研究は,マルチモダリティの追求に伴う敵のエスカレーションリスクを浮き彫りにする。
論文 参考訳(メタデータ) (2023-06-22T22:13:03Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
大規模視覚言語モデル(VLM)のロバスト性を,最も現実的で高リスクな環境で評価する。
特に,CLIP や BLIP などの事前学習モデルに対して,まず攻撃対象のサンプルを作成する。
これらのVLM上のブラックボックスクエリは、ターゲットの回避の効果をさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-26T13:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。