論文の概要: Disentangled PET Lesion Segmentation
- arxiv url: http://arxiv.org/abs/2411.01758v1
- Date: Mon, 04 Nov 2024 02:50:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:42.932377
- Title: Disentangled PET Lesion Segmentation
- Title(参考訳): 異方性PET病変の分節化
- Authors: Tanya Gatsak, Kumar Abhishek, Hanene Ben Yedder, Saeid Asgari Taghanaki, Ghassan Hamarneh,
- Abstract要約: PET-Disentanglerは3次元UNetライクなエンコーダデコーダアーキテクチャを用いて病気と正常な健康な解剖学的特徴を分解する。
批判ネットワークは、健康なサンプルの分布に合うように健康な潜伏した特徴を奨励するために使用される。
- 参考スコア(独自算出の注目度): 16.459171554437535
- License:
- Abstract: PET imaging is an invaluable tool in clinical settings as it captures the functional activity of both healthy anatomy and cancerous lesions. Developing automatic lesion segmentation methods for PET images is crucial since manual lesion segmentation is laborious and prone to inter- and intra-observer variability. We propose PET-Disentangler, a 3D disentanglement method that uses a 3D UNet-like encoder-decoder architecture to disentangle disease and normal healthy anatomical features with losses for segmentation, reconstruction, and healthy component plausibility. A critic network is used to encourage the healthy latent features to match the distribution of healthy samples and thus encourages these features to not contain any lesion-related features. Our quantitative results show that PET-Disentangler is less prone to incorrectly declaring healthy and high tracer uptake regions as cancerous lesions, since such uptake pattern would be assigned to the disentangled healthy component.
- Abstract(参考訳): PET画像は、正常な解剖と癌病変の両方の機能的活性を捉えるため、臨床環境では貴重なツールである。
PET画像の自動病変分割法の開発は,手指の病変分割が困難であり,サーバ間およびサーバ内変動の傾向が強いため,重要な課題である。
PET-Disentanglerは3次元UNetライクなエンコーダ・デコーダアーキテクチャを用いて病気や正常な正常な解剖学的特徴を分解し,セグメンテーション,再構成,健康な構成要素の妥当性を損なう3次元ディコンタングルメント手法である。
批評家ネットワークは、健康な潜伏した特徴を健康なサンプルの分布に合わせるように奨励するために使用され、これらの特徴が病変に関連する特徴を含まないよう奨励する。
その結果, PET-Disentanglerは, 正常および高トレーサーの取り込み部位を癌病変と誤判定する傾向が低かった。
関連論文リスト
- AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
我々は,新しいU-Netフレームワーク内で3次元残留エンコーダU-Netを訓練し,自動病変分割の性能を一般化した。
腫瘍病変のセグメンテーションを増強するために,テストタイム増強や他の後処理技術を利用した。
現在、私たちのチームはAuto-PET IIIチャレンジでトップの地位にあり、Diceスコア0.9627の予備テストセットでチャレンジベースラインモデルを上回っています。
論文 参考訳(メタデータ) (2024-09-19T20:18:39Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
論文 参考訳(メタデータ) (2024-09-14T16:39:17Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Whole-Body Lesion Segmentation in 18F-FDG PET/CT [11.662584140924725]
提案モデルは, 全身の病変を予測するために, 2D と 3D nnUNET アーキテクチャを基礎として設計されている。
提案手法は, ダイススコア, 偽陽性ボリューム, 偽陰性ボリュームの計測値において, 病変のセグメンテーション性能を計測するAutoPet Challengeの文脈で評価する。
論文 参考訳(メタデータ) (2022-09-16T10:49:53Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Evidential segmentation of 3D PET/CT images [20.65495780362289]
3D PET/CT画像におけるリンパ腫のセグメント化には、信念関数に基づくセグメンテーション法が提案されている。
アーキテクチャは特徴抽出モジュールと明白なセグメンテーション(ES)モジュールで構成されている。
びまん性大細胞性b細胞リンパ腫173例のデータベース上で評価した。
論文 参考訳(メタデータ) (2021-04-27T16:06:27Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。