論文の概要: Real-Time Polygonal Semantic Mapping for Humanoid Robot Stair Climbing
- arxiv url: http://arxiv.org/abs/2411.01919v1
- Date: Mon, 04 Nov 2024 09:34:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:46:13.645184
- Title: Real-Time Polygonal Semantic Mapping for Humanoid Robot Stair Climbing
- Title(参考訳): ヒューマノイドロボットステアクライミングのためのリアルタイム多角的意味マッピング
- Authors: Teng Bin, Jianming Yao, Tin Lun Lam, Tianwei Zhang,
- Abstract要約: 階段などの複雑な地形を探索するヒューマノイドロボットに適した,リアルタイムな平面意味マッピングのための新しいアルゴリズムを提案する。
奥行き画像上での異方性拡散フィルタを用いて,重要なエッジ情報を保持しつつ,勾配ジャンプからの雑音を効果的に最小化する。
提案手法は,30Hz以上のレートで1フレームをリアルタイムに処理し,詳細な平面抽出とマップ管理を迅速かつ効率的に行う。
- 参考スコア(独自算出の注目度): 19.786955745157453
- License:
- Abstract: We present a novel algorithm for real-time planar semantic mapping tailored for humanoid robots navigating complex terrains such as staircases. Our method is adaptable to any odometry input and leverages GPU-accelerated processes for planar extraction, enabling the rapid generation of globally consistent semantic maps. We utilize an anisotropic diffusion filter on depth images to effectively minimize noise from gradient jumps while preserving essential edge details, enhancing normal vector images' accuracy and smoothness. Both the anisotropic diffusion and the RANSAC-based plane extraction processes are optimized for parallel processing on GPUs, significantly enhancing computational efficiency. Our approach achieves real-time performance, processing single frames at rates exceeding $30~Hz$, which facilitates detailed plane extraction and map management swiftly and efficiently. Extensive testing underscores the algorithm's capabilities in real-time scenarios and demonstrates its practical application in humanoid robot gait planning, significantly improving its ability to navigate dynamic environments.
- Abstract(参考訳): 階段などの複雑な地形を探索するヒューマノイドロボットに適した,リアルタイムな平面意味マッピングのための新しいアルゴリズムを提案する。
提案手法は任意のオドメトリ入力に適応し,GPU加速処理を平面抽出に利用することにより,一貫したセマンティックマップを高速に生成する。
奥行き画像に異方性拡散フィルタを用いることで、固有エッジの詳細を保存しつつ、勾配ジャンプからのノイズを効果的に最小化し、通常のベクトル画像の精度と滑らかさを高める。
異方性拡散とRANSACに基づく平面抽出プロセスは、GPU上での並列処理に最適化され、計算効率が大幅に向上する。
提案手法は,30〜Hzドルを超えるレートで1フレームをリアルタイムに処理し,平面抽出やマップ管理を迅速かつ効率的に行う。
大規模なテストは、アルゴリズムの能力をリアルタイムシナリオで評価し、ヒューマノイドロボット歩行計画における実用性を実証し、動的環境をナビゲートする能力を大幅に改善する。
関連論文リスト
- EDCSSM: Edge Detection with Convolutional State Space Model [3.649463841174485]
画像のエッジ検出は、コンピュータグラフィックスにおける多くの複雑なタスクの基礎となっている。
多層畳み込みとプールアーキテクチャによる特徴損失のため、学習ベースのエッジ検出モデルは、しばしば厚いエッジを生成する。
本稿では,上記の問題に効果的に対処するエッジ検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T05:13:25Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - FlowIE: Efficient Image Enhancement via Rectified Flow [71.6345505427213]
FlowIEはフローベースのフレームワークであり、基本的な分布から高品質な画像への直線パスを推定する。
私たちのコントリビューションは、合成および実世界のデータセットに関する包括的な実験を通じて、厳密に検証されています。
論文 参考訳(メタデータ) (2024-06-01T17:29:29Z) - Edge-Enabled Real-time Railway Track Segmentation [0.0]
エッジ対応鉄道線路分割アルゴリズムを提案する。
ネットワーク構造を最適化し、トレーニング後のモデルを定量化することで、エッジアプリケーションに適したように最適化されている。
実験結果から,提案アルゴリズムの精度は83.3%であった。
論文 参考訳(メタデータ) (2024-01-21T13:45:52Z) - Unlocking the Performance of Proximity Sensors by Utilizing Transient
Histograms [20.994250740256458]
近距離時間(ToF)距離センサのクラスで捉えた一過性ヒストグラムを利用して平面風景形状を復元する手法を提案する。
過渡ヒストグラム(Transient histogram)は、ToFセンサに入射した光子の到着時刻を符号化した1次元の時間波形である。
本稿では,ロボットアームのエンドエフェクタに装着したセンサから平面面の距離と傾斜を計測するために,本手法を用いたシンプルなロボット工学アプリケーションを実演する。
論文 参考訳(メタデータ) (2023-08-25T16:20:41Z) - Improving Gradient Methods via Coordinate Transformations: Applications to Quantum Machine Learning [0.0]
機械学習アルゴリズムは勾配降下などの勾配に基づく最適化アルゴリズムに大きく依存している。
全体的な性能は、局所的なミニマと不毛の高原の出現に依存する。
本稿では,これらの手法の全般的な性能向上を図り,バレンプラトー効果と局所ミニマ効果を緩和する汎用戦略を提案する。
論文 参考訳(メタデータ) (2023-04-13T18:26:05Z) - Globally Optimal Event-Based Divergence Estimation for Ventral Landing [55.29096494880328]
イベントセンシングはバイオインスパイアされた飛行誘導と制御システムの主要なコンポーネントである。
本研究では, イベントカメラを用いた腹側着陸時の表面との接触時間予測について検討する。
これは、着陸時に発生する事象の流れから放射光の流れの速度である発散(逆TTC)を推定することで達成される。
我々のコアコントリビューションは、イベントベースの発散推定のための新しいコントラスト最大化定式化と、コントラストを正確に最大化し、最適な発散値を求めるブランチ・アンド・バウンドアルゴリズムである。
論文 参考訳(メタデータ) (2022-09-27T06:00:52Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - CUDA-Optimized real-time rendering of a Foveated Visual System [5.260841516691153]
本稿では,GPUを用いて高速(165Hz)でガウス画像(1920x1080)を効率よく生成する手法を提案する。
提案手法は生体人工エージェント間の空間変動処理の需要を満たし,既存システム上で容易にフォベーションを付加できる。
論文 参考訳(メタデータ) (2020-12-15T22:43:04Z) - AOT: Appearance Optimal Transport Based Identity Swapping for Forgery
Detection [76.7063732501752]
顔偽造検出のための外観の相違が大きい新しい識別スワップアルゴリズムを提案する。
外観のギャップは主に、照明と肌の色における大きな相違から生じる。
実画像パッチと偽画像パッチの混在とを識別するために識別器を導入する。
論文 参考訳(メタデータ) (2020-11-05T06:17:04Z) - Real-time Semantic Segmentation with Fast Attention [94.88466483540692]
本稿では,高解像度画像と映像をリアルタイムにセマンティックセグメンテーションするための新しいアーキテクチャを提案する。
提案したアーキテクチャは我々の空間的注意の速さに依存しており、これは一般的な自己注意機構の単純かつ効率的な修正である。
複数のデータセットに対する結果から,既存の手法に比べて精度と速度が向上し,優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-07T22:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。