The Certainty Ratio $C_ρ$: a novel metric for assessing the reliability of classifier predictions
- URL: http://arxiv.org/abs/2411.01973v1
- Date: Mon, 04 Nov 2024 10:50:03 GMT
- Title: The Certainty Ratio $C_ρ$: a novel metric for assessing the reliability of classifier predictions
- Authors: Jesus S. Aguilar-Ruiz,
- Abstract summary: This paper introduces the Certainty Ratio ($C_rho$), a novel metric designed to quantify the contribution of confident (certain) versus uncertain predictions to any classification performance measure.
Experimental results across 26 datasets and multiple classifiers, including Decision Trees, Naive-Bayes, 3-Nearest Neighbors, and Random Forests, demonstrate that $C_rho$rho reveals critical insights that conventional metrics often overlook.
- Score: 0.0
- License:
- Abstract: Evaluating the performance of classifiers is critical in machine learning, particularly in high-stakes applications where the reliability of predictions can significantly impact decision-making. Traditional performance measures, such as accuracy and F-score, often fail to account for the uncertainty inherent in classifier predictions, leading to potentially misleading assessments. This paper introduces the Certainty Ratio ($C_\rho$), a novel metric designed to quantify the contribution of confident (certain) versus uncertain predictions to any classification performance measure. By integrating the Probabilistic Confusion Matrix ($CM^\star$) and decomposing predictions into certainty and uncertainty components, $C_\rho$ provides a more comprehensive evaluation of classifier reliability. Experimental results across 26 datasets and multiple classifiers, including Decision Trees, Naive-Bayes, 3-Nearest Neighbors, and Random Forests, demonstrate that $C_\rho$ reveals critical insights that conventional metrics often overlook. These findings emphasize the importance of incorporating probabilistic information into classifier evaluation, offering a robust tool for researchers and practitioners seeking to improve model trustworthiness in complex environments.
Related papers
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Evaluating Predictive Distributions: Does Bayesian Deep Learning Work? [45.290773422944866]
Posterior predictive distributions quantify uncertainties ignored by point estimates.
This paper introduces textitThe Neural Testbed, which provides tools for the systematic evaluation of agents that generate such predictions.
arXiv Detail & Related papers (2021-10-09T18:54:02Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Uncertainty Quantification in Extreme Learning Machine: Analytical
Developments, Variance Estimates and Confidence Intervals [0.0]
Uncertainty quantification is crucial to assess prediction quality of a machine learning model.
Most methods proposed in the literature make strong assumptions on the data, ignore the randomness of input weights or neglect the bias contribution in confidence interval estimations.
This paper presents novel estimations that overcome these constraints and improve the understanding of ELM variability.
arXiv Detail & Related papers (2020-11-03T13:45:59Z) - Failure Prediction by Confidence Estimation of Uncertainty-Aware
Dirichlet Networks [6.700873164609009]
It is shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence of correct and incorrect predictions in the true class probability metric.
A new criterion is proposed for learning the true class probability by matching prediction confidence scores while taking imbalance and TCP constraints into account.
arXiv Detail & Related papers (2020-10-19T21:06:45Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.