論文の概要: Explainable cognitive decline detection in free dialogues with a Machine Learning approach based on pre-trained Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02036v1
- Date: Mon, 04 Nov 2024 12:38:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:44:40.837071
- Title: Explainable cognitive decline detection in free dialogues with a Machine Learning approach based on pre-trained Large Language Models
- Title(参考訳): 事前学習された大規模言語モデルに基づく機械学習による自由対話における説明可能な認知低下検出
- Authors: Francisco de Arriba-Pérez, Silvia García-Méndez, Javier Otero-Mosquera, Francisco J. González-Castaño,
- Abstract要約: 我々は,認知の低下を検出するために,自由対話から特徴を抽出するために,Large Language Modelsを提案する。
本ソリューションは, (i) 事前処理, (ii) 自然言語処理技術による特徴工学, (iii) 性能を最適化するための特徴解析と選択, (iv) 自動説明可能性による分類を含む。
- 参考スコア(独自算出の注目度): 6.817247544942709
- License:
- Abstract: Cognitive and neurological impairments are very common, but only a small proportion of affected individuals are diagnosed and treated, partly because of the high costs associated with frequent screening. Detecting pre-illness stages and analyzing the progression of neurological disorders through effective and efficient intelligent systems can be beneficial for timely diagnosis and early intervention. We propose using Large Language Models to extract features from free dialogues to detect cognitive decline. These features comprise high-level reasoning content-independent features (such as comprehension, decreased awareness, increased distraction, and memory problems). Our solution comprises (i) preprocessing, (ii) feature engineering via Natural Language Processing techniques and prompt engineering, (iii) feature analysis and selection to optimize performance, and (iv) classification, supported by automatic explainability. We also explore how to improve Chatgpt's direct cognitive impairment prediction capabilities using the best features in our models. Evaluation metrics obtained endorse the effectiveness of a mixed approach combining feature extraction with Chatgpt and a specialized Machine Learning model to detect cognitive decline within free-form conversational dialogues with older adults. Ultimately, our work may facilitate the development of an inexpensive, non-invasive, and rapid means of detecting and explaining cognitive decline.
- Abstract(参考訳): 認知的障害や神経学的障害は非常に一般的であるが、頻繁なスクリーニングに伴う高コストのため、少数の患者のみが診断・治療を受けている。
神経疾患の早期診断や早期介入には、有効で効率的なインテリジェントシステムによる早期診断や、神経疾患の進行を解析することが有用である。
我々は,認知の低下を検出するために,自由対話から特徴を抽出するために,Large Language Modelsを提案する。
これらの特徴は、コンテンツに依存しない高レベルな推論機能(理解、認識の低下、注意散逸の増大、記憶の問題など)から構成される。
私たちのソリューションは
(i)前処理、
(二)自然言語処理技術による特徴工学及び素早い工学
三 性能を最適化するための特徴分析及び選択
(4) 自動説明可能性による分類。
また、私たちのモデルで最高の機能を使用して、Chatgptの直接認知障害予測機能を改善する方法について検討する。
特徴抽出とChatgptを併用した混合アプローチと,高齢者との自由形式の対話における認知低下を検出する機械学習モデルの有効性を検証した。
究極的には、我々の研究は、認知の低下を検知し説明するための、安価で非侵襲的で迅速な手段の開発を促進するかもしれない。
関連論文リスト
- A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection [35.31259047578382]
本稿では,非侵襲的認知障害検出のためのディープラーニング手法の最近の進歩を概説する。
音声や言語,顔,運動運動など,認知低下の非侵襲的指標について検討した。
著しい進歩にもかかわらず、データ標準化とアクセシビリティ、モデル説明可能性、縦断解析の限界、臨床適応などいくつかの課題が残っている。
論文 参考訳(メタデータ) (2024-10-25T17:44:59Z) - Deep Insights into Cognitive Decline: A Survey of Leveraging Non-Intrusive Modalities with Deep Learning Techniques [0.5172964916120903]
本研究は、ディープラーニング技術を用いて認知低下推定作業を自動化する最も関連性の高い手法についてレビューする。
トランスフォーマーアーキテクチャやファンデーションモデルのような最先端のアプローチを含む、各モダリティと方法論の重要な特徴と利点について論じる。
ほとんどの場合、テキストのモダリティは最良の結果を得ることができ、認知の低下を検出するのに最も関係がある。
論文 参考訳(メタデータ) (2024-10-24T17:59:21Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Cognitive Insights Across Languages: Enhancing Multimodal Interview Analysis [0.6062751776009752]
軽度認知障害と認知スコアを予測できるマルチモーダルモデルを提案する。
提案モデルでは,インタビューで使用した言語を書き起こし,区別する能力を示す。
提案手法では,提案手法から得られた様々な特徴を詳細に検討する。
論文 参考訳(メタデータ) (2024-06-11T17:59:31Z) - Automatic detection of cognitive impairment in elderly people using an entertainment chatbot with Natural Language Processing capabilities [8.032202552952299]
本稿では,高齢者の認知障害を透過的にモニタリングする知的会話システムについて紹介する。
自然言語生成技術を用いて,更新されたニュース項目から対話フローを自動生成する。
このシステムは、質問に対する回答のゴールドスタンダードを推論し、認知能力を自動的に評価する。
論文 参考訳(メタデータ) (2024-05-28T19:17:48Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Assessing Language Disorders using Artificial Intelligence: a Paradigm
Shift [0.13393465195776774]
言語障害、言語障害、コミュニケーション障害は、ほとんどの神経変性症候群にみられる。
我々は,機械学習手法,自然言語処理,現代人工知能(AI)を言語評価に活用することは,従来の手作業による評価よりも優れていると論じている。
論文 参考訳(メタデータ) (2023-05-31T17:20:45Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。