Collaborative Cognitive Diagnosis with Disentangled Representation Learning for Learner Modeling
- URL: http://arxiv.org/abs/2411.02066v2
- Date: Sun, 10 Nov 2024 08:50:06 GMT
- Title: Collaborative Cognitive Diagnosis with Disentangled Representation Learning for Learner Modeling
- Authors: Weibo Gao, Qi Liu, Linan Yue, Fangzhou Yao, Hao Wang, Yin Gu, Zheng Zhang,
- Abstract summary: Leveraging collaborative connections among similar learners proves valuable in comprehending human learning.
We present Coral, a Collaborative cognitive diagnosis model with disentangled representation learning.
- Score: 14.574222901039155
- License:
- Abstract: Learners sharing similar implicit cognitive states often display comparable observable problem-solving performances. Leveraging collaborative connections among such similar learners proves valuable in comprehending human learning. Motivated by the success of collaborative modeling in various domains, such as recommender systems, we aim to investigate how collaborative signals among learners contribute to the diagnosis of human cognitive states (i.e., knowledge proficiency) in the context of intelligent education. The primary challenges lie in identifying implicit collaborative connections and disentangling the entangled cognitive factors of learners for improved explainability and controllability in learner Cognitive Diagnosis (CD). However, there has been no work on CD capable of simultaneously modeling collaborative and disentangled cognitive states. To address this gap, we present Coral, a Collaborative cognitive diagnosis model with disentangled representation learning. Specifically, Coral first introduces a disentangled state encoder to achieve the initial disentanglement of learners' states. Subsequently, a meticulously designed collaborative representation learning procedure captures collaborative signals. It dynamically constructs a collaborative graph of learners by iteratively searching for optimal neighbors in a context-aware manner. Using the constructed graph, collaborative information is extracted through node representation learning. Finally, a decoding process aligns the initial cognitive states and collaborative states, achieving co-disentanglement with practice performance reconstructions. Extensive experiments demonstrate the superior performance of Coral, showcasing significant improvements over state-of-the-art methods across several real-world datasets. Our code is available at https://github.com/bigdata-ustc/Coral.
Related papers
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
CoGCL aims to enhance graph contrastive learning by constructing contrastive views with stronger collaborative information via discrete codes.
We introduce a multi-level vector quantizer in an end-to-end manner to quantize user and item representations into discrete codes.
For neighborhood structure, we propose virtual neighbor augmentation by treating discrete codes as virtual neighbors.
Regarding semantic relevance, we identify similar users/items based on shared discrete codes and interaction targets to generate the semantically relevant view.
arXiv Detail & Related papers (2024-09-09T14:04:17Z) - CoSD: Collaborative Stance Detection with Contrastive Heterogeneous Topic Graph Learning [18.75039816544345]
We present a novel collaborative stance detection framework called (CoSD)
CoSD learns topic-aware semantics and collaborative signals among texts, topics, and stance labels.
Experiments on two benchmark datasets demonstrate the state-of-the-art detection performance of CoSD.
arXiv Detail & Related papers (2024-04-26T02:04:05Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Knowledge Boosting: Rethinking Medical Contrastive Vision-Language
Pre-Training [6.582001681307021]
We propose the Knowledge-Boosting Contrastive Vision-Language Pre-training framework (KoBo)
KoBo integrates clinical knowledge into the learning of vision-language semantic consistency.
Experiments validate the effect of our framework on eight tasks including classification, segmentation, retrieval, and semantic relatedness.
arXiv Detail & Related papers (2023-07-14T09:38:22Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - Learning to Model the Relationship Between Brain Structural and
Functional Connectomes [16.096428756895918]
We develop a graph representation learning framework to model the relationship between brainobjective connectivity (SC) and functional connectivity (FC)
A trainable graph convolutional encoder captures interactions between brain regions-of-interest that mimic actual neural communications.
Experiments demonstrate that the learnt representations capture valuable information from the intrinsic properties of the subject's brain networks.
arXiv Detail & Related papers (2021-12-18T11:23:55Z) - A Prior Guided Adversarial Representation Learning and Hypergraph
Perceptual Network for Predicting Abnormal Connections of Alzheimer's Disease [29.30199956567813]
Alzheimer's disease is characterized by alterations of the brain's structural and functional connectivity.
PGARL-HPN is proposed to predict abnormal brain connections using triple-modality medical images.
arXiv Detail & Related papers (2021-10-12T03:10:37Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
arXiv Detail & Related papers (2021-04-30T05:46:02Z) - Exploring Visual Engagement Signals for Representation Learning [56.962033268934015]
We present VisE, a weakly supervised learning approach, which maps social images to pseudo labels derived by clustered engagement signals.
We then study how models trained in this way benefit subjective downstream computer vision tasks such as emotion recognition or political bias detection.
arXiv Detail & Related papers (2021-04-15T20:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.