Fixed Point Diffusion Models
- URL: http://arxiv.org/abs/2401.08741v1
- Date: Tue, 16 Jan 2024 18:55:54 GMT
- Title: Fixed Point Diffusion Models
- Authors: Xingjian Bai and Luke Melas-Kyriazi
- Abstract summary: Fixed Point Diffusion Model (FPDM) is a novel approach to image generation that integrates the concept of fixed point solving into the framework of diffusion-based generative modeling.
Our approach embeds an implicit fixed point solving layer into the denoising network of a diffusion model, transforming the diffusion process into a sequence of closely-related fixed point problems.
We conduct experiments with state-of-the-art models on ImageNet, FFHQ, CelebA-HQ, and LSUN-Church, demonstrating substantial improvements in performance and efficiency.
- Score: 13.035518953879539
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce the Fixed Point Diffusion Model (FPDM), a novel approach to
image generation that integrates the concept of fixed point solving into the
framework of diffusion-based generative modeling. Our approach embeds an
implicit fixed point solving layer into the denoising network of a diffusion
model, transforming the diffusion process into a sequence of closely-related
fixed point problems. Combined with a new stochastic training method, this
approach significantly reduces model size, reduces memory usage, and
accelerates training. Moreover, it enables the development of two new
techniques to improve sampling efficiency: reallocating computation across
timesteps and reusing fixed point solutions between timesteps. We conduct
extensive experiments with state-of-the-art models on ImageNet, FFHQ,
CelebA-HQ, and LSUN-Church, demonstrating substantial improvements in
performance and efficiency. Compared to the state-of-the-art DiT model, FPDM
contains 87% fewer parameters, consumes 60% less memory during training, and
improves image generation quality in situations where sampling computation or
time is limited. Our code and pretrained models are available at
https://lukemelas.github.io/fixed-point-diffusion-models.
Related papers
- PQD: Post-training Quantization for Efficient Diffusion Models [4.809939957401427]
We propose a novel post-training quantization for diffusion models (PQD)
We show that our proposed method is able to directly quantize full-precision diffusion models into 8-bit or 4-bit models while maintaining comparable performance in a training-free manner.
arXiv Detail & Related papers (2024-12-30T19:55:59Z) - Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models [52.1809084559048]
We propose a novel two-stage divide-and-conquer training strategy termed TDC Training.
It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models.
While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
Current methods assume the degradation to be known and provide impressive results in terms of restoration and diversity.
In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the kernel model.
Our method alternates between approximating the expected log-likelihood of the problem using samples drawn from a diffusion model and a step to estimate unknown model parameters.
arXiv Detail & Related papers (2023-09-01T06:47:13Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.