論文の概要: Targeted Learning for Variable Importance
- arxiv url: http://arxiv.org/abs/2411.02221v1
- Date: Mon, 04 Nov 2024 16:14:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:49:45.071264
- Title: Targeted Learning for Variable Importance
- Title(参考訳): 可変重要度のための目標学習
- Authors: Xiaohan Wang, Yunzhe Zhou, Giles Hooker,
- Abstract要約: 変数の重要性は、機械学習を解釈するための最も広く使われている手段の1つです。
本稿では,変数重要度に対する推論の堅牢性を高めるために,ターゲット学習(TL)フレームワークを用いた新しい手法を提案する。
i) 従来の手法の効率を保ち, (ii) 計算量に匹敵する複雑性を維持し, (iii) 精度を向上し, 特に有限サンプル文脈において有効であることを示す。
- 参考スコア(独自算出の注目度): 23.428985354228672
- License:
- Abstract: Variable importance is one of the most widely used measures for interpreting machine learning with significant interest from both statistics and machine learning communities. Recently, increasing attention has been directed toward uncertainty quantification in these metrics. Current approaches largely rely on one-step procedures, which, while asymptotically efficient, can present higher sensitivity and instability in finite sample settings. To address these limitations, we propose a novel method by employing the targeted learning (TL) framework, designed to enhance robustness in inference for variable importance metrics. Our approach is particularly suited for conditional permutation variable importance. We show that it (i) retains the asymptotic efficiency of traditional methods, (ii) maintains comparable computational complexity, and (iii) delivers improved accuracy, especially in finite sample contexts. We further support these findings with numerical experiments that illustrate the practical advantages of our method and validate the theoretical results.
- Abstract(参考訳): 変数の重要性は、統計と機械学習コミュニティの両方から大きな関心を持つ機械学習を解釈するための最も広く使われている尺度の1つである。
近年,これらの指標における不確実性定量化に注目が集まっている。
現在のアプローチは1段階の手順に大きく依存しており、漸近的に効率的ではあるが、有限サンプル設定において高い感度と不安定性を示すことができる。
これらの制約に対処するために,変数重要度に対する推論の堅牢性を高めるために,ターゲット学習(TL)フレームワークを用いた新しい手法を提案する。
提案手法は条件付き変分変数の重要度に特に適している。
私たちはそれを示します
一 従来の方法の漸近効率を維持すること。
(ii)計算量に匹敵する複雑さを維持し、
(iii)特に有限サンプル文脈において精度が向上する。
さらに,本手法の実用性を示す数値実験を行い,理論的結果の検証を行った。
関連論文リスト
- A Smooth Transition Between Induction and Deduction: Fast Abductive Learning Based on Probabilistic Symbol Perception [81.30687085692576]
確率的シンボル知覚(PSP)と呼ばれる最適化アルゴリズムを導入し,誘導と推論のスムーズな遷移を実現する。
実験は有望な結果を実証する。
論文 参考訳(メタデータ) (2025-02-18T14:59:54Z) - iLOCO: Distribution-Free Inference for Feature Interactions [4.56754610152086]
本稿では,高次特徴相互作用の重要性を測定するための新しいモデル非依存指標を提案する。
We developed distribution-free and assumption-light confidence intervals for our iLOCO metric。
我々は,iLOCO測定値と信頼区間を,合成データと実データの両方で検証する。
論文 参考訳(メタデータ) (2025-02-10T16:49:46Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
The consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation。
まず、分散に明示的に依存し、弱い条件下で保持する新しい高次元確率収束保証を導出する。
さらに、文献よりも高速な速度を保証する凸集合のクラスに対して、洗練された高次元ベリー-エッセイン境界を確立する。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Learning Representations of Instruments for Partial Identification of Treatment Effects [23.811079163083303]
我々は任意の(潜在的に高次元の)機器を用いて条件平均処理効果(CATE)の限界を推定する。
本稿では,楽器を離散表現空間にマッピングする手法を提案する。
我々は、潜在楽器空間のニューラルネットワーク分割を調整し、厳密な境界を学習する2段階の手順を導出する。
論文 参考訳(メタデータ) (2024-10-11T16:48:32Z) - Uncertainty quantification for learned ISTA [5.706217259840463]
これらのモデルに基づく学習手法では,アルゴリズムの解法が顕著である。
確実性見積が欠如しており、不確実性定量化の理論はまだ解明されていない。
本研究は,LISTA推定器の信頼区間を得るための厳密な手法を提案する。
論文 参考訳(メタデータ) (2023-09-14T18:39:07Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Interpretable Anomaly Detection via Discrete Optimization [1.7150329136228712]
本稿では,シーケンシャルデータから本質的に解釈可能な異常検出を学習するためのフレームワークを提案する。
この問題は計算的に困難であることを示し,制約最適化に基づく2つの学習アルゴリズムを開発した。
プロトタイプ実装を用いて,提案手法は精度とF1スコアの点で有望な結果を示す。
論文 参考訳(メタデータ) (2023-03-24T16:19:15Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
複雑度尺度であるDecision-Estimation Coefficientは,サンプル効率のインタラクティブ学習に必要かつ十分であることが証明された。
統合アルゴリズム設計原則であるE2Dは、教師付き推定のための任意のアルゴリズムを、意思決定のためのオンラインアルゴリズムに変換する。
論文 参考訳(メタデータ) (2021-12-27T02:53:44Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
統計的問題をスパース係数回帰として定式化し、分割コンカレントアプローチでそれに取り組む。
第1段階分割では、タスクを1組の同時並列推定(CURE)問題に単純化するための2つの潜時並列アプローチについて検討する。
第2段階分割では、CUREの全解を効率的に追跡するために、一連の単純な増分経路からなる段階学習手法を革新する。
論文 参考訳(メタデータ) (2020-03-17T19:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。