Memetic collaborative approaches for finding balanced incomplete block designs
- URL: http://arxiv.org/abs/2411.02250v1
- Date: Mon, 04 Nov 2024 16:41:18 GMT
- Title: Memetic collaborative approaches for finding balanced incomplete block designs
- Authors: David RodrÃguez Rueda, Carlos Cotta, Antonio J. Fernández-Leiva,
- Abstract summary: The balanced incomplete block design (BIBD) problem is a difficult problem with a large number of symmetries.
We propose a dual (integer) problem representation that serves as an alternative to the classical binary formulation of the problem.
- Score: 0.0
- License:
- Abstract: The balanced incomplete block design (BIBD) problem is a difficult combinatorial problem with a large number of symmetries, which add complexity to its resolution. In this paper, we propose a dual (integer) problem representation that serves as an alternative to the classical binary formulation of the problem. We attack this problem incrementally: firstly, we propose basic algorithms (i.e. local search techniques and genetic algorithms) intended to work separately on the two different search spaces (i.e. binary and integer); secondly, we propose two hybrid schemes: an integrative approach (i.e. a memetic algorithm) and a collaborative model in which the previous methods work in parallel, occasionally exchanging information. Three distinct two-dimensional structures are proposed as communication topology among the algorithms involved in the collaborative model, as well as a number of migration and acceptance criteria for sending and receiving data. An empirical analysis comparing a large number of instances of our schemes (with algorithms possibly working on different search spaces and with/without symmetry breaking methods) shows that some of these algorithms can be considered the state of the art of the metaheuristic methods applied to finding BIBDs. Moreover, our cooperative proposal is a general scheme from which distinct algorithmic variants can be instantiated to handle symmetrical optimisation problems. For this reason, we have also analysed its key parameters, thereby providing general guidelines for the design of efficient/robust cooperative algorithms devised from our proposal.
Related papers
- Metaheuristics for the Template Design Problem: Encoding, Symmetry and Hybridisation [0.0]
The template design problem (TDP) is a hard problem with a high number of symmetries which makes solving it more complicated.
This paper explores and analyses a wide range of metaheuristics to tackle the problem with the aim of assessing their suitability for finding template designs.
arXiv Detail & Related papers (2024-11-05T06:29:12Z) - Deep memetic models for combinatorial optimization problems: application to the tool switching problem [0.0]
This work tackles deep meta-cooperation, namely the use of cooperative optimization algorithms in which some components can in turn be cooperative methods themselves.
The objective of this paper is to demonstrate that such models can be considered as an efficient alternative to other traditional forms of cooperative algorithms.
Results show that deep models are effective to solve this problem, outperforming metaheuristics parameters proposed in the literature.
arXiv Detail & Related papers (2024-11-04T09:39:03Z) - Distributed Linear Regression with Compositional Covariates [5.085889377571319]
We focus on the distributed sparse penalized linear log-contrast model in massive compositional data.
Two distributed optimization techniques are proposed for solving the two different constrained convex optimization problems.
In the decentralized topology, we introduce a distributed coordinate-wise descent algorithm for obtaining a communication-efficient regularized estimation.
arXiv Detail & Related papers (2023-10-21T11:09:37Z) - Doubly Stochastic Matrix Models for Estimation of Distribution
Algorithms [2.28438857884398]
We explore the use of Doubly Matrices (DSM) for matching and assignment nature permutation problems.
Specifically, we adopt the framework of estimation of distribution algorithms and compare DSMs to some existing proposals for permutation problems.
Preliminary experiments on instances of the quadratic assignment problem validate this line of research and show that DSMs may obtain very competitive results.
arXiv Detail & Related papers (2023-04-05T14:36:48Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
We show how a difference of Euclidean convexization functions can be written as a difference of different types of problems in statistics and machine learning.
Ultimately, we helps the broader broader the broader the broader the broader the work.
arXiv Detail & Related papers (2022-06-22T23:57:40Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Dynamic programming by polymorphic semiring algebraic shortcut fusion [1.9405875431318445]
Dynamic programming (DP) is an algorithmic design paradigm for the efficient, exact solution of intractable, problems.
This paper presents a rigorous algebraic formalism for systematically deriving DP algorithms, based on semiring.
arXiv Detail & Related papers (2021-07-05T00:51:02Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.