論文の概要: Targeted Manipulation and Deception Emerge when Optimizing LLMs for User Feedback
- arxiv url: http://arxiv.org/abs/2411.02306v1
- Date: Mon, 04 Nov 2024 17:31:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:42:11.219085
- Title: Targeted Manipulation and Deception Emerge when Optimizing LLMs for User Feedback
- Title(参考訳): ユーザフィードバックのためのLLM最適化における目標操作と誤認識の創発
- Authors: Marcus Williams, Micah Carroll, Adhyyan Narang, Constantin Weisser, Brendan Murphy, Anca Dragan,
- Abstract要約: 人間のフィードバックを最大限にするためのトレーニングは、AIの逆インセンティブ構造を生み出します。
ユーザフィードバックを模擬した強化学習によるLLMの学習により,この現象を研究する。
- 参考スコア(独自算出の注目度): 7.525470776920495
- License:
- Abstract: As LLMs become more widely deployed, there is increasing interest in directly optimizing for feedback from end users (e.g. thumbs up) in addition to feedback from paid annotators. However, training to maximize human feedback creates a perverse incentive structure for the AI to resort to manipulative tactics to obtain positive feedback, and some users may be especially vulnerable to such tactics. We study this phenomenon by training LLMs with Reinforcement Learning with simulated user feedback. We have three main findings: 1) Extreme forms of "feedback gaming" such as manipulation and deception can reliably emerge in domains of practical LLM usage; 2) Concerningly, even if only <2% of users are vulnerable to manipulative strategies, LLMs learn to identify and surgically target them while behaving appropriately with other users, making such behaviors harder to detect; 3 To mitigate this issue, it may seem promising to leverage continued safety training or LLM-as-judges during training to filter problematic outputs. To our surprise, we found that while such approaches help in some settings, they backfire in others, leading to the emergence of subtler problematic behaviors that would also fool the LLM judges. Our findings serve as a cautionary tale, highlighting the risks of using gameable feedback sources -- such as user feedback -- as a target for RL.
- Abstract(参考訳): LLMがより広くデプロイされるにつれて、有料アノテータからのフィードバックに加えて、エンドユーザ(例えばサムアップ)からのフィードバックを直接最適化することへの関心が高まっている。
しかし、人間のフィードバックを最大化するためのトレーニングは、AIが肯定的なフィードバックを得るためにマニピュティブな戦術を利用するための逆のインセンティブ構造を生み出し、一部のユーザーはそのような戦術に特に脆弱であるかもしれない。
ユーザフィードバックを模擬した強化学習によるLLMの学習により,この現象を研究する。
主な発見は3つあります。
1) 操作や偽装といった「フィードバックゲーム」の極端な形態は,実用的LLM使用領域において確実に現れる。
2) 操作戦略に脆弱な利用者は2%に過ぎなかったが, LLMは, 他ユーザと適切に行動しながら, 手術的標的として認識し, 検出しづらくすること, 3 この問題を緩和するために, 問題のあるアウトプットをフィルタリングするトレーニング中に, 継続的な安全トレーニングやLCM-as-judgesを活用することを約束していると考えられる。
驚いたことに、このようなアプローチはいくつかの設定で役立ちますが、他の設定ではバックファイアになり、LCMの裁判官を騙すような微妙な問題行動が出現します。
我々の発見は、RLのターゲットとしてゲーム可能なフィードバックソース(ユーザフィードバックなど)を使用するリスクを強調し、注意深い物語として機能します。
関連論文リスト
- AI Meets the Classroom: When Does ChatGPT Harm Learning? [0.0]
我々は,生成型AI,特に大規模言語モデル(LLM)がプログラミングクラスにおける学習に与える影響について検討する。
LLMの使用が学習結果に肯定的,否定的な影響を及ぼす可能性が3つの研究で示された。
論文 参考訳(メタデータ) (2024-08-29T17:07:46Z) - LLM Whisperer: An Inconspicuous Attack to Bias LLM Responses [28.49203239329941]
命令における微妙なシノニム置換は、LLMが目標概念に言及する可能性(最大78%)を高めることができることを示す。
信頼できない関係者からのプロンプトの使用に対する警告の実施を推奨する。
論文 参考訳(メタデータ) (2024-06-07T08:54:55Z) - Reinforcement Learning from Multi-role Debates as Feedback for Bias Mitigation in LLMs [6.090496490133132]
本稿では,従来のRLHFのフィードバックに取って代わるバイアス緩和手法であるReinforcement Learning from Multi-role Debates as Feedback (RLDF)を提案する。
強化学習における報酬モデルのトレーニングに,高バイアスと低バイアスの両方のインスタンスを含むデータセットを作成するために,LLMをマルチロール討論に活用する。
論文 参考訳(メタデータ) (2024-04-15T22:18:50Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Feedback Loops With Language Models Drive In-Context Reward Hacking [78.9830398771605]
フィードバックループがコンテキスト内報酬ハッキング(ICRH)を引き起こす可能性があることを示す。
ICRHに繋がる2つのプロセス、すなわちアウトプット・リファインメントとポリシー・リファインメントを同定し研究する。
AI開発が加速するにつれて、フィードバックループの効果が増大する。
論文 参考訳(メタデータ) (2024-02-09T18:59:29Z) - Reinforcement Learning from LLM Feedback to Counteract Goal
Misgeneralization [0.0]
強化学習(RL)における目標誤一般化に対処する手法を提案する。
目標の誤一般化は、エージェントがその能力のアウト・オブ・ディストリビューションを維持しながら、意図したものよりもプロキシを追求する場合に発生する。
本研究では,大規模言語モデルを用いてRLエージェントを効率的に監視する方法を示す。
論文 参考訳(メタデータ) (2024-01-14T01:09:48Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Interpreting Learned Feedback Patterns in Large Language Models [11.601799960959214]
我々は、微調整言語モデルのアクティベーションにおいて暗黙的にフィードバック信号を推定するプローブを訓練する。
これらの推定値を真のフィードバックと比較し、LFPの精度を微調整フィードバックと比較する。
我々は、GPT-4が記述し、LFPに関連するものとして分類する特徴に対して、正のフィードバック入力と相関する神経特徴を比較して、プローブを検証する。
論文 参考訳(メタデータ) (2023-10-12T09:36:03Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - Exploiting Programmatic Behavior of LLMs: Dual-Use Through Standard
Security Attacks [67.86285142381644]
命令追従型大規模言語モデルの最近の進歩は、悪意のある目的のために二重使用リスクを増幅する。
命令追従機能がコンピュータセキュリティの標準的な攻撃を可能にするため、デュアルユースを防ぐのは難しい。
本研究では,LLMがヘイトスピーチや詐欺などの悪意のあるコンテンツをターゲットにすることができることを示す。
論文 参考訳(メタデータ) (2023-02-11T15:57:44Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。