Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking
- URL: http://arxiv.org/abs/2411.02345v1
- Date: Mon, 04 Nov 2024 18:16:40 GMT
- Title: Simulation of Nanorobots with Artificial Intelligence and Reinforcement Learning for Advanced Cancer Cell Detection and Tracking
- Authors: Shahab Kavousinejad,
- Abstract summary: This study presents a new reinforcement learning framework for optimizing nanorobot navigation in complex biological environments.
We utilize a computer simulation model to explore the behavior of nanorobots in a three-dimensional space with cancer cells and biological barriers.
The proposed method uses Q-learning to refine movement strategies based on real-time biomarker concentration data, enabling nanorobots to autonomously navigate to cancerous tissues for targeted drug delivery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nanorobots are a promising development in targeted drug delivery and the treatment of neurological disorders, with potential for crossing the blood-brain barrier (BBB). These small devices leverage advancements in nanotechnology and bioengineering for precise navigation and targeted payload delivery, particularly for conditions like brain tumors, Alzheimer's disease, and Parkinson's disease. Recent progress in artificial intelligence (AI) and machine learning (ML) has improved the navigation and effectiveness of nanorobots, allowing them to detect and interact with cancer cells through biomarker analysis. This study presents a new reinforcement learning (RL) framework for optimizing nanorobot navigation in complex biological environments, focusing on cancer cell detection by analyzing the concentration gradients of surrounding biomarkers. We utilize a computer simulation model to explore the behavior of nanorobots in a three-dimensional space with cancer cells and biological barriers. The proposed method uses Q-learning to refine movement strategies based on real-time biomarker concentration data, enabling nanorobots to autonomously navigate to cancerous tissues for targeted drug delivery. This research lays the groundwork for future laboratory experiments and clinical applications, with implications for personalized medicine and less invasive cancer treatments. The integration of intelligent nanorobots could revolutionize therapeutic strategies, reducing side effects and enhancing treatment effectiveness for cancer patients. Further research will investigate the practical deployment of these technologies in medical settings, aiming to unlock the full potential of nanorobotics in healthcare.
Related papers
- Advancing Embodied Intelligence in Robotic-Assisted Endovascular Procedures: A Systematic Review of AI Solutions [27.68772584578631]
The integration of Embodied Intelligence into robotic systems signifies a paradigm shift.
Data-driven approaches, advanced computer vision, medical image analysis, and machine learning techniques, are at the forefront of this evolution.
We discuss recent advancements in intelligent perception and data-driven control, and their practical applications in robot-assisted procedures.
arXiv Detail & Related papers (2025-04-21T13:49:30Z) - Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence [54.14779179869007]
We highlight key areas where AI is driving innovation, from data analysis to new biological insights.
These include developing an AI-friendly ecosystem for data generation, sharing, and analysis.
arXiv Detail & Related papers (2025-02-21T13:20:33Z) - How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities [46.671834972945874]
We propose a vision of leveraging advances in AI to construct virtual cells.
We discuss desired capabilities of such AI Virtual Cells, including generating universal representations of biological entities.
We envision a future where AI Virtual Cells help identify new drug targets, predict cellular responses to perturbations, as well as scale hypothesis exploration.
arXiv Detail & Related papers (2024-09-18T02:41:50Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Chemotaxis of sea urchin sperm cells through deep reinforcement learning [0.0]
In this work, we investigate how a model of sea urchin sperm cell can self-learn chemotactic motion in a chemoattractant concentration field.
We employ an artificial neural network to act as a decision-making agent and facilitate the sperm cell to discover efficient maneuver strategies.
Our results provide insights to the chemotactic process of sea urchin sperm cells and also prepare guidance for the intelligent maneuver of microrobots.
arXiv Detail & Related papers (2022-08-02T06:04:32Z) - Nanorobot queue: Cooperative treatment of cancer based on team member
communication and image processing [6.1587841288357135]
Most effective way to treat cancer diseases at this stage is through chemotherapy and radiotherapy.
This paper proposes an ideal model of a treatment method that can completely cure cancer, a cooperative treatment method based on nano robot queue through team member communication and computer vision image classification (target detection)
arXiv Detail & Related papers (2021-11-22T14:33:41Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - A Spiking Neural Network Emulating the Structure of the Oculomotor
System Requires No Learning to Control a Biomimetic Robotic Head [0.0]
A neuromorphic oculomotor controller is placed at the heart of our in-house biomimetic robotic head prototype.
The controller is unique in the sense that all data are encoded and processed by a spiking neural network (SNN)
We report the robot's target tracking ability, demonstrate that its eye kinematics are similar to those reported in human eye studies and show that a biologically-constrained learning can be used to further refine its performance.
arXiv Detail & Related papers (2020-02-18T13:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.